[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 1
Logika dan pemrograman computer merupakan salah satu mata kuliah dasar di Program Studi Teknik Mesin dengan bahasa pemrograman Matlab. Mata kuliah ini disajikan pada semester III yang meliputi pembahasan mengenai algoritma, logika dan bahasa pemrograman, matematika sederhana, operasi array, fungsi M-file, system GUI, Graphic, Simulink dan control sistem. Logika dan pemrograman komputer sangat ditunjang oleh mata kuliah tertentu khususnya kalkulus karena dalam pemrograman komputer sangat diperlukan pemahaman di bidang matematika sederhana dan matematika model. Logika dan pemrograman komputer merupakan penunjang yang sangat mendasar bagi mata kuliah teknik control.
Bahasa pemrograman sebagai media untuk berinteraksi antara manusia dengan computer dewasa ini dibuat agar semakin mudah dan cepat. Banyak bahasa pemrograman yang bisa digunakan dalam pemecahan masalah keteknikan, seperti C++, Pascal, Delphi, Visual basic, Java dan yang lainnya. Semua itu mampu membantu kita dalam berinteraksi dengan computer dan masalah keteknikan. Dalam perkuliahan Logika dan Pemrograman Komputer khususnya di Teknik Mesin Universitas Udayana bahasa pemrograman yang dipakai adalah bahasa Matlab.
Matlab dikembangkan sebagai bahasa pemrogrman sekaligus alat visualisasi yang menawarkan banyak kemampuan untuk menyelesaikan berbagai kasus yang berhubungan langsung dengan matematika, rekayasa teknik, fisika, statistika, komputasi dan modeling. Matlab dibangun dari bahasa induknya yaitu bahasa C, namun tidak dapat dikatakan sebagai varian dari C, karena dalam sintak maupun cara kerjanya sama sekali berbeda dengan C. Namun dengan hubungan langsungnya terhadap C, Matlab memiliki kelebihan-kelebihan bahasa C bahkan mampu berjalan pada semua platform Sistem Operasi tanpa mengalami perubahan sintak sama sekali.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 2
Matlab merupakan singkatan dari Matric Laboratory, yakni merupakan bahasa pemrograman haig perpomace, bahasa pemrograman level tinggi yang khususnya untuk komputasi teknis. Bahasa ini mengintegrasikan kemampuan komputasi, visualisasi dan pemrograman dalam sebuah lingkungan yang tunggal dan mudah digunakan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 3
2.1 Konsep Algoritma
Algoritma merupakan pondasi yang harus dikuasai oleh setiap mahasiswa yang ingin menyelesaikan suatu masalah secara berstruktur, efektif, dan efisien, teristimewa lagi bagi mahasiswa yang ingin menyusun program komputer untuk menyelesaikan suatu persoalan. Konsep dan dasar-dasar penyusunan algoritma akan dibahas dalam bab ini.
Definisi
Algoritma:
1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas, tetapi tersusun secara logis dan sistematis.
2. Suatu prosedur yang jelas untuk menyelesaikan suatu persoalan dengan menggunakan langkah-langkah tertentu dan terbatas jumlahnya.
3. Algoritma adalah sekelompok aturan untuk menyelesaikan perhitungan yang dilakukan oleh tangan atau mesin.
4. Algoritma adalah langkah demi langkah sebuh prosedur berhingga yang dibutuhkan untuk menghasilkan sebuh penyelesaian
5. Algoritma adalah langkah –langkah perhitungan yang mentransformasikan dari nilai masukan menjadi keluaran
6. Algoritma adalah urutan operasi yang dilakukan terhadap data yang terorganisir dalam struktur data
7. Algoritma adalah sebuah program abstrak yang dapat dieksekusi secara fisik oleh mesin
8. Algoritma adalah sebuah model perhitungan yang dilakukan oleh computer
Catatan Sejarah
Abu Ja'far Muhammad Ibnu Musa Al-Kwarizmi, penulis buku "Aljabar wal muclabala" beberapa abad yang lalu (pada abad IX), dianggap sebagai pencetus pertama Algoritma karena di dalam buku tersebut Abu Ja'far menjelaskan langkah-langkah
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 4
dalam menyelesaikan berbagai persoalan aritmetika (aljabar), Kemungkinan besar kata "Algoritma" diambil dari kata "Al-Kwarizmi" yang kemudian berubah menjadi "Algorism", selanjutnya menjadi "Algorithm".
Ciri Algoritma
Donald E. Knuth, seorang penulis beberapa buku algoritma abad XX, menyatakan bahwa ada beberapa ciri algoritma, yaitu:
• Algoritma mempunyai awal dan akhir. Suatu algoritma harus berhenti setelah mengerjakan serangkaian tugas atau dengan kata lain suatu algoritma memiliki langkah yang terbatas.
• Setiap langkah harus didefinisikan dengan tepat sehingga tidak memiliki arti ganda (not ambiguous).
• Memiliki masukan (input) atau kondisi awal.
• Memiliki keluaran (output) atau kondisi akhir.
• Algoritma harus efektif; bila diikuti benar-benar akan menyelesaikan persoalan.
Algoritma bisa ditemukan dalam kehidupan sehari-hari, misalnya sebagai berikut:
Tabel 2.1 Contoh Algoritma dalam kehidupan sehari-hari
Proses
Algoritma
Contoh langkah
1. Membuat Kue
Resep Kue
Campurkan 2 butir telur ke dalam adonan, kemudian kocok hingga mengembung.
2. Membuat Pakaian
Pola pakaian
Gunting kain dad pinggir kid bawah ke arah
kanan atas sepanjang 15 cm.
3. Praktikum Kimia
Petunjuk Praktikum
Campurkan 10 ml Asam Sulfat ke dalam 15 ml
Natrium hidroksida.
Sifat Algoritma
Berdasarkan ciri algoritma yang dipaparkan oleh Donald Knuth dan definisi Algoritma maka dapat disimpulkan sifat utama suatu algoritma, yaitu sebagai berikut:
• input: Suatu algoritma memiliki input atau kondisi awal sebelum algoritma dilaksanakan dan bisa berupa nilai-nilai pengubah yang diambil dari himpunan khusus.
• output: Suatu algoritma akan menghasilkan output setelah dilaksanakan, atau algoritma akan mengubah kondisi awal menjadi kondisi akhir, di mana nilai output diperoleh dari nilai input yang telah diproses melalui algoritma.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 5
• definiteness: Langkah-langkah yang dituliskan dalam algoritma terdefinisi dengan jelas sehingga mudah dilaksanakan oleh pengguna algoritma.
• finiteness: Suatu algoritma harus memberi kondisi akhir atau output setelah melakukan sejumlah langkah yang terbatas jumlahnya untuk setiap kondisi awal atau input yang diberikan.
• effectiveness: Setiap langkah dalam algoritma bisa dilaksanakan dalam suatu selang waktu tertentu sehingga pada akhimya memberi solusi sesuai yang diharapkan.
• generality: Langkah-langkah algoritma berlaku untuk setiap himpunan input yang sesuai dengan persoalan yang akan diberikan, tidak hanya untuk himpunan tertentu.
Agar bentuk algoritma dan proses penyusunannya dapat mulai dipahami maka berikut ini akan diuraikan proses pembuatan algoritma mulai bentuk yang menggunakan bahasa sehari-hari, disusul penjelasan format algoritma yang dapat dijadikan acuan, dan beberapa contoh pembuatan algoritma yang mengikuti format tersebut.
Contoh: Susun algoritma untuk mencari angka terbesar (maksimum) dari suatu kumpulan
bilangan bulat yang terbatas jumlahnya.
Solusi:
1. Anggaplah angka pertama dalam kumpulan tersebut adalah yang terbesar (maksimum).
2. Bandingkan angka maksimum ini dengan angka berikutnya dalam kumpulan. Bila angka berikut tersebut lebih besar maka jadikanlah maksimum.
3. Ulangi langkah 2 ini sehingga tidak ada lagi angka yang tersisa dalam himpunan.
4. Hentikan pembandingan setelah semua angka selesai dibandingkan sehingga angka terbesar dalam himpunan tersebut adalah angka maksimum terakhir.
Solusi tersebut dalam bentuk simbol instruksi adalah sebagai berikut:
• andaikan N = banyaknya angka dalam himpunan
• index = 1
• maksimum = angka(index)
• selama index < N , lakukan:
o index = index + 1
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 6
o bila angka(index) > maksimum maka maksimum = angka (index)
o ulangi lagi untuk index berikutnya
• angka terbesar dalam himpunan adalah maksimum terakhir.
Suatu algoritma tentu dapat ditulis dengan menggunakan bahasa sehari-hari seperti contoh di atas. Namun, algoritma seperti ini masih sulit untuk langsung diterjemahkan apabila akan diimplementasi ke dalam suatu bahasa pemrograman komputer. Setiap algoritma tentu saja memerlukan suatu langkah "peralihan" ke suatu bahasa program ketika akan dilaksanakan dengan menggunakan komputer sehingga semakin dekat bentuk algoritma ini ke bentuk program komputer maka semakin mudah diterjemahkan. Suatu algoritma juga dapat ditulis langsung dalam bentuk "bahasa program", tetapi algoritma seperti ini hanya bisa digunakan untuk bahasa program tertentu dan terpaksa diubah kembali untuk disesuaikan apabila akan diimplementasi dengan bahasa program yang lain. Suatu struktur tertentu akan diperkenalkan dalam buku ini agar algoritma dapat diterima secara umum dan cukup efisien apabila akan diterjemahkan ke dalam bahasa program.
Struktur Algoritma
Agar algoritma dapat ditulis lebih teratur maka sebaiknya dibagi ke dalam beberapa bagian. Salah satu struktur yang sering dijadikan patokan adalah berikut:
• Bagian Kepala (Header): memuat nama algoritma serta informasi atau keterangan tentang algoritma yang ditulis.
• Bagian Deklarasi/Definisi Variabel: memuat definisi tentang nama variabel, nama tetapan, nama prosedur, nama fungsi, tipe data yang akan digunakan dalam algoritma.
o Bagian Deskripsi/Rincian Langkah: memuat langkah-langkah penyelesaian masalah, termasuk beberapa perintah seperti baca data, tampilkan, ulangi, yang mengubah data input menjadi output, dan sebagainya.
Contoh 1: Berikut ini adalah contoh struktur sebuah algoritma:
Algoritma Luas - lingkaran
{ menghitung luas sebuah lingkaran apabila jari-jari lingkaran tersebut diberikan }
Deklarasi
I Definisi nama tetapan }
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 7
const N = 10;
const phi = 3.14;
definisi nama peubah/variabel }
real jari_jari, luas;
Deskripsi
read(jari-jari);
luas =phi* jari_jari* jari_jari;
write(luas);
Contoh 2: Contoh berikut ini adalah algoritma untuk menghitung nilai rata sejumlah angka yang dimasukkan lewat keyboard.
Algoritma Nilai_Rata
( menghitung nilai rata sejumlah bilangan yang dimasukkan lewat keyboard }
Definisi Variabel
integer x, N, k, jumlah;
real nilai_rata;
Rincian Langkah
{ masukkan jumlah data }
read(N);
k ←1;
jumlah ← 0;
while (k <= N) do
( baca data )
read(x);
jumlah ← jumlah + x;
k ← k + 1;
endwhile
( hitung nilai rata )
nilai_rata ← jumlah / N;
write(nilai_rata);
Contoh 3: Contoh algoritma yang menerima dua buah angka bulat kemudian menampilkan angka yang lebih besar.
Algoritma Lebih_besar
( menerima dua angka kemudian menampilkan angka yang lebih besar }
Definisi Variabel
integer angka 1, angka 2;
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 8
Rincian Langkah
( memasukkan angka }
write ("Masukkan angka 1:”); read (angka1);
write ("Masukkan angka 2:”); read (angka2);
( periksa yang lebih besar }
if (angka1 > angka2)
then write("yang lebih besar=”,angka1);
else write("yang lebih besar=”, angka2);
endif.
Contoh 4: Algoritma berikut ini mencari angka terbesar dari suatu himpunan angka.
Algoritma Terbesar
( membentuk himpunan angka, kemudian mencari angka terbesar }
Definisi Variabel
integer N=25, max, indeks;
integer Angka[N];
Rincian Langkah
( memasukkan anggota himpunan angka }
for( i = 1 to N step 1)
write("Masukkan angka ke:",i);
read( Angka[ i ] );
endfor.
{max adalah angka pertama}
max ← Angka[ 1 ];
indeks ←1;
( bandingkan max dengan setiap angka dalam himpunan }
while ( indeks < N) do
indeks ← indeks + 1;
if ( Angka[indeks] > max )
then max ← Angka[indeks];
enddo.
write ( "Angka terbesar=”,max );
2.2 Flowcharting
Flowchart adalah suatu teknik untuk menyusun rencana program telah diperkenalkan dan telah dipergunakan oleh kalangan programer komputer sebelum algoritma menjadi populer, yaitu flowcharting. Flowchart adalah untaian simbol gambar (chart) yang
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 9
menunjukkan aliran (flow) dari proses terhadap data. Simbol-simbol flowchart dapat diklasifikasikan menjadi simbol untuk program dan simbol untuk sistem (peralatan hardware).
Gambar 2.1 Simbul program flowchart dan system flowchart
Contoh : Gambarkan Flowchart dari proses pemilihan satu bilangan yang lebih besar di antara dua buah bilangan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 10
Contoh : Proses memilih satu bilangan terbesar dari tiga bilangan.
Contoh : Jalan raga trans Sulawesi sepanjang 2000 Km akan segera ditingkatkan. Pada setiap jarak 65 Km akan dibangun fasilitas berupa pompa bensin, kafe, tempat istirahat, dan tempat ibadah. Tampilkan lokasi pada jarak kilometer berapa fasilitas tersebut akan dibangun.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 11
2.3 Analisa Algoritma
Untuk suatu fungsi polynomial f(n) dengan n data masukan, terdapat tiga keadaan yang bisa muncul selama waktu tenpuh algoritma dan disebut kompleksitas waktu yaitu Worst Case, Average Case dan Best Case. Penjelasan masing-masing kompleksitas sebagai berikut:
1. Worst Case merupakan waktu tempuh yang bernilai maksimum dari suatu fungsi f(n) untuk setiap input yang mungkin. Keadaan ini disebut sebagai keadaan terburuk (keadaan terjelek) dari sebuah algoritma.
2. Average Case merupakan suatu keadaan dari waktu tempuh yang ekivalen dengan nilai ekspetasi dari fungsi f(n) untuk setiap input data yang mungkin. Fungsi f(n)=e dan didefenisikan e = n1p1 + n2p2 + … + nkpk dengan n1,n2 . . . nk merupakan nilai-nilai yang muncul, sedangkan p1,p2,…,pk merupakan probabilitas dari setiap nilai (n1) yang muncul.
3. Best Case merupakan waktu tempuh yang bernilai minimum dari suatu fungsi f(n) untuk setiap input yang mungkin. Keadaan ini disebut sebagai keadaan terbaik dari suatu proses sebuah algoritma menyelesaikan permasalahan.
Kompleksitas sebuah algoritma adalah fungsi g(n) yang berada diatas batas bilangan operasi (running time) yang dibentuk oleh algoritma ketika diberikan input berukuran n. Relatif sulit membuat statistic perilaku masukan, sehingga paling sering diberikan perilaku keadaan jelek (worst case). Waktu maksimum dari kompleksitas g(n) didekati dengan O(f(n)) dimana f(n) adalah salah satu dari fungsi berikut ini:
f(n)=n (kompleksitas linier), f(n)=log n (kompleksitas logaritmatik), f(n)=na dimana a ≥ 2 (kompleksitas polynomial), f(n)=an (kompleksitas eksponensial).
2.3 Himpunan
Dalam matematika himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun ini merupakan ide sederhana, himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern. Definisi lain dari himpunan adalah sekelompok obyek yang direpresentasikan dalam satu satuan (unit). Setiap objek dari himpunan disebut elemen atau anggota dan umumnya setiap elemen dalam himpunan mempunyai beberapa kesamaan sifat atau karakteristik. Unit
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 12
yang melingkupi beberapa anggota disebut semesta pembicaraan dan mempunyai paling sedikit satu elemen.
SOAL
1. Gambar flowchart untuk mengganti ban kempes sebuah mobil dengan ban reserve yang tersedia.
2. Gambar flowchart untuk menyiapkan secangkir kopi manis di pagi hari (dimulai dari memasak air hingga menghidangkan kopi).
3. Gambar flowchart untuk memilih satu bilangan terbesar dari empat bilangan.
4. Gambar flowchart untuk memilih satu bilangan terbesar dari N buah bilangan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 13
Pada prinsipnya, suatu program komputer memanipulasi data untuk menjadi informasi yang berguna. Dengan demikian, perlu dipahami beberapa hal yang berkaitan dengan data, yaitu tipe data, variabel,dan nilai data sebagai berikut:
• Tipe data: setiap data memiliki tipe data, apakah merupakan angka bulat (integer), angka biasa (real), atau berupa karakter (char), dan sebagainya.
• Variabel: setiap data diwakili oleh suatu variabel, dan variabel ini diberi nama agar bisa dibedakan terhadap variabel lainnya.
• Mai: setiap data memiliki harga atau nilai, misalnya umur seseorang diwakili oleh variabel UMUR yang bertipe bilangan, dan memiliki nilai 20 tahun. Perlu diketahui bahwa dalam representasi nilai data dada komputer, setiap tipe data memiliki batasan nilai masing-masing.
3.1 Tipe Data
Ada dua kategori dari tipe data, yaitu tipe dasar dan tipe bentukan.Tipe dasar adalah tipe data yang selalu tersedia data setiap bahasa pemrograman, antara lain bilangan bulat (integer), bilangan biasa (real), bilangan tetap (const), karakter (character atau char), logik (logic atau boolean). Tipe bentukan adalah tipe data yang dibentuk dari kombinasi tipe dasar, antara lain larik (array), rekaman (record), string (string).
Tipe Dasar
1. Bilangan bulat (integer)
• Bilangan atau angka yang tidak memiliki titik desimal atau pecahan, seperti 10, +255, -1024, +32767.
• Tipe dituliskan sebagai integer atau int
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 14
• Jangkauan nilai bergantung pada implementasi perangkat keras komputer, misalnya dari -32768 s/d +32767; untuk algoritma tidak kita batasi.
• Operasi aritmetik: tambah + , kurang - , kali * , bagi /, sisa basil bagi
• Operasi pembandingan : lebih kecil < , lebih kecil atau sama < = lebih besar > ,
lebih besar atau sama > = sama=, tidak sama ><
2. Bilangan biasa (real)
• Bilangan atau angka yang bisa memiliki titik desimal atau pecahan, dan ditulis sebagai: 235.45, +1023.55, -987.3456 atau dalam notasi ilmiah seperti: 1.245E+03, 7.45E-02, +2.34E-04, -5.43E+04, dsb.
• Tipe dituliskan sebagai : real
• Jangkauan nilai: bergantung pada implementasi perangkat keras komputer, misalnya dari -2.9E-39 s/d +1.7E+38, untuk algoritma tidak kita batasi.
• Operasi aritmatik dan pembandingan juga berlaku bagi bilangan biasa.
3. Bilangan tetap (const)
• Bilangan tetap (const) adalah tipe bilangan, baik bernilai bulat maupun tidak, yang nilainya tidak berubah selama algoritma dilaksanakan.
• Tipe dituliskan sebagai const.
• Jangkauan nilai meliputi semua bilangan yang mungkin.
4. Karakter (character)
• Karakter adalah data tunggal yang mewakili semua huruf, simbol baca, dan juga simbol angka yang tidak dapat dioperasikan secara matematis, misalnya: 'A', 'B',.., 'Z','a', 'b',.., 'z', '?', '!', ':', ';'dst.
• Tipe dituliskan sebagai char.
• Jangkauan nilai meliputi semua karakter dalam kode ASCII, atau yang tertera pada setiap tombol keyboard.
• Operasi pembandingan dapat dilakukan dan dievaluasi menurut urutan kode ASCII, sehingga huruf 'A' (Hex 41) sebenarnya lebih kecil dari huruf 'a' (Hex 61).
5. Logik (logical)
• Tipe data logik adalah tipe data yang digunakan untuk memberi nilai pada hasil pembandingan, atau kombinasi pembandingan.
• Tipe dituliskan sebagai boolean
• Jangkauan nilai ada dua: true dan false
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 15
• Contoh: 45 > 56 hasilnya false, Amir < Husni hasilnya true
• Ada beberapa operasi untuk data jenis logik, antara lain and, or, dan not
Tabel 3.1 Operasi untuk data logik
A
B
A and B
A or B
Not A
False
False
False
False
True
False
True
False
True
True
True
False
False
True
False
True
True
True
True
False
Tipe Bentukan
1. Array (larik)
• Array adalah tipe data bentukan, yang merupakan wadah untuk menampung beberapa nilai data yang sejenis. Kumpulan bilangan bulat adalah array integer, kumpulan bilangan tidak bulat adalah array real.
• Cara mendefinisikan ada dua macam, yaitu:
• Nilai ujian : array [1 .. 10] of integer; atau
• int nilai_ujian [0];
• Kedua definisi di atas menunjukkan bahwa nilai_ujian adalah kumpulan dari 10 nilai bertipe bilangan bulat.
2. String
• String adalah tipe data bentukan yang merupakan deretan karakter yang membentuk satu kata atau satu kalimat, yang biasanya diapit oleh dua tanda kutip.
• Sebagai contoh: nama, alamat, dan judul adalah tipe string.
• Cara mendefinisikannya adalah:
• String Nama, Alamat; atau
• Nama, Alamat : String;
3. Record (rekaman)
• Record adalah tipe data bentukan yang merupakan wadah untuk menampung elemen data yang tipenya tidak perlu sama dengan tujuan mewakili satu jenis objek.
• Sebagai contoh, mahasiswa sebagai satu jenis objek memiliki beberapa elemen data seperti: nomer_stb, nama, umur, t4lahir, jenkel.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 16
• Cara mendefinisikan record mahasiswa tersebut adalah sebagai berikut:
Type DataMhs : record
< nomer — stb : integer,
Nama_mhs : string,
umur : integer,
t4lahir : string,
jenkel : char;
3.2 Variabel
Variabel adalah nama yang mewakili suatu elemen data seperti: jenkel untuk jenis enis kelamin, t4lahir untuk tempat lahir, alamat untuk alamat, dan sebagainya. Ada aturan tertentu yang wajib diikuti dalam pemberian nama variabel, antara lain:
• Harus dimulai dengan abjad, tidak boleh dengan angka atau simbol.
• Tidak boleh ada spasi di antaranya
• Jangan menggunakan simbol-simbol yang bisa membingungkan seperti titik dua, titik koma, koma, dan sebagainya.
• Sebaiknya memiliki arti yang sesuai dengan elemen data.
• Sebaiknya tidak terlalu panjang.
Contoh variabel yang benar: Nama, Alamat, Nilai_Ujian
Contoh variabel yang salah: 4XYZ, IP rata, Var:+xy,458;
3.3 Pemberian Nilai
Ada dua cara yang dapat digunakan untuk memberi nilai pada suatu variabel, yaitu melalui proses assignment dan pembacaan.
Pemberian nilai dengan cara assignment mempunyai bentuk umum sebagai berikut:
• Variabel ← nilai;
• Variabell ← variabel2;
• Variabel ← ekspresi;
Contoh assignment:
• Nama ←"Ali bin AbuThalib";
• Jarak ←100.56;
• X ← Jarak;
• Rentang ←X+50-3*Y;
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 17
Pemberian nilai dengan cara pembacaan dapat dilakukan melalui instruksi pembacaan dengan bentuk umum sebagai berikut:
• read(variabel); atau
• read( variabel1, variabel2,…);
Contoh pembacaan data:
• read(Nama);
• read(Jarak, Rentang, X);
3.4 Menampilkan Nilai
Agar hasil pelaksanaan algoritma dapat dikomunikasikan atau ditayangkan maka nilai variabel yang telah diproses dalam algoritma dapat ditampilkan. Instruksi untuk menampilkan nilai variabel adalah: write(variabel,…);
Contoh penampilan nilai adalah sebagai berikut:
• write("nama anda :",Nama);
• write("nilai ujian = ", nilai);
• write("Jumlah variabel = ", X + Y + Z);
3.5 Ekspresi (Expression)
Ekspresi adalah transformasi data dan peubah dalam bentuk persamaan yang direlasikan oleh operator dan operand. Operand adalah data, tetapan, peubah, atau hasil dan suatu fungsi, sedangkan operator adalah simbol - simbol yang memiliki fungsi untuk menghubungkan operand sehingga terjadi transformasi. Jenis-jenis operator adalah sebagai berikut:
• Operator aritmetika: operator untuk melakukan fungsi aritmetika seperti: + (menjumlah), - (mengurangkan), * (mengalikan), / (membagi).
• Operator relational: operator untuk menyatakan relasi atau perbandingan antara dua operand, seperti: > (lebih besar), < (lebih kecil), >= (lebih besar atau sama), <= (lebih kecil atau sama), == (sama), != (tidak sama) atau > <, < >.
• Operator logik: operator untuk merelasikan operand secara logis, seperti && (and), ║(or), dan ! (not).
• Operator string: operator untuk memanipulasi string, seperti +
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 18
(concatenation), len (panjang string), dan substr (substring, mencuplik).
Berdasarkan jenis operator yang digunakan maka ada empat macam ekspresi, yaitu ekspresi aritmetika, ekspresi relational, ekspresi logik, dan ekspresi string.
• Ekspresi Aritmetika: ekspresi yang memuat operator aritmetika, contoh:
• T ←5 * (C + 32) / 9;
• Y←5*((a+b)/(c+d) +m/(e*f));
• Gaji ←GaPok * ( I + JumNak * 0.05 + Lembur * 1.25);
• Ekspresi Relational: ekspresi yang memuat operator relational, contoh:
• Nilai_A > Nilai_B
• (A+B)<(C+D)
• (x + 57) != (y + 34)
• Ekspresi Logik: ekspresi yang memuat operator logik, contoh:
o m← (x>y)&&(5+z)
o n ← ( !A ║ !(B&&C))
• Ekspresi String: eskpresi dengan operator string, contoh:
• Alamat ←"Jl. P. Kemerdekaan " + "Km 9 Tamalanrea"
• Hasil←"Saudara:"+Nama+ "adalah mahasiswa"
• Tengah ←Substr(Kalimat, 5, 10);
Contoh Algoritma:
1. Susun algoritma yang menghitung pajak pertambahan nilai (ppn) 12.50% dengan meminta harga barang yang dibeli dari pengguna program.
Algoritma PPN
{ menghitung pajak pertambahan nilai 12.50% dari harga barang }
Definisi Variabel
real harga, pajak, total;
Rincian Langkah
write ("Masukkan harga barang : ");
read(harga);
pajak (-- 0.125 * harga;
total = harga + pajak;
write("Harga ", harga, " pajaknya=”,pajak);
write("Total = total);
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 19
2. Susun algoritma yang meminta data dasar mahasiswa (mis: Nama, Alamat, e—mail, dan telepon) kemudian menampilkannya kembali secara tersusun.
Algoritma Data_dasar
{membaca dan menampilkan data dasar mahasiswa}
Definisi Variabel:
string nama, alamat, e–mail, telepon;
Rincian Langkah:
{proses input/perrnintaan data }
write ("Masukkan nama Anda: ");
read(nama);
write("Di mans alamatnya: ");
read(alamat);
write("No telepon: “);
read(telepon);
write("Alamat e-mail: ");
read(e_mail);
{proses tamplian hasil input }
write(nama);
write(alamat, telepon);
write(e_mail);
SOAL:
1. Definisikan sebuah record untuk data pegawai yang terdiri atas elemen Nomor_Pegawai (NIP), Nama, TgLahir, Tempat_Lahir, Jen_Kelamin, Agama, Status, Pangkat.
2. Tulis algoritma sederhana untuk membaca dan menampilkan kembali data pegawai yang sesuai dengan struktur record pada Soal 1.
3. Tulin algoritma yang meminta suhu dalam skala celcius dan menampilkan suhu tersebut dalam skala Fahrenheit. (F = 9/5 * C + 32).
4. Tulis algoritma yang membaca tiga data, yaitu nilai tugas, nilai mid, dan nilai final, kemudian menghitung nilai akhir = 20% nilai tugas + 30% nilai mid + 50% nilai final. Tampilkan nilai akhir ini.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 20
4.1 Form/Window Matlab
Sebagaimana bahasa pemrog-raman lainnya, MATLAB juga menyediakan lingkungan kerja terpadu yang sangat mendukung dalam pembangunan aplikasi. Pada setiap versi MATLAB yang terbaru, lingkungan terpadunya akan se-makin dilengkapi. Lingkungan terpadu ini terdiri atas beberapa form/window yang memiliki ~egunaan masing-masing. Untuk memulai aplikasi Matlab, anda hanya perlu mengklik kon Matlab pada Dekstop window, atau bisa juga dengan menu start seperti pada aplikasi-aplikasi lainnya.
Setiap pertama kali mulai membuka aplikasi Matlab, anda akan memperoleh beberapa form/window, yang sebenarnya menurut oenulis hanya membuat dekstop anda <elihatan penuh.
Matlab akan menyimpan mode/setting terakhir lingkungan Kerja yang anda gunakan sebagai mode/setting lingkungan kerja pada saat anda membuka aplikasi Matlab di waktu berikutnya.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 21
4.1.1. Windows Utama Matlab
Window ini adalah window induk yang melingkupi seluruh lingkungan kerja MATLAB. Pada versi-versi pendahulu, window ini secara khusus belum ada namun terintegrasi dengan Command Window. Tidak ada fungsi utama yang ditawarkan oleh window ini selain sebagai tempat dock-ing bagi form yang lain.
4.1.2. Workspace Windows
Window ini juga barn diperkenalkan pada versi 6, berfungsi sebagai navigator bagi pemakai dalam penyediaan informasi mengenai 'eariabel yang sedang aktif dalam workspace pada saat pemakaian. Workspace adalah suatu lingkungan abstrak yang menyimpan seluruh .'ariabel dan perintah yang pernah digunakan selama penggunaan MATLAB berlangsung.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 22
4.1.3. Current Directory Window
Window ini juga fasilitas yang diperkenalkan pada versi 6. Berfungsi sebagai browser direktori aktif, yang hampir sama dengan window explorer.
4.1.4. Comand History Window
Window ini berfungsi sebagai penyimpan perintah-perintah yang pernah dikerjakan pada suatu workspace. Juga barn ada pada Matlab versi 6 keatas.
4.1.5. Comand Window
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 23
Window ini berfungsi sebagai penerima perintah dari pemakai untuk menjalankan seluruh fungsi-fungsi yang disediakan oleh MATLAB. Pada dasarnya window inilah inti dari pemrograman MATLAB yang menjadi media utama satu-satunya bagi kits untuk berinteraks dengan MATLAB.
4.2. Cara Bekerja Dengan MATLAB
Dalam melakukan pekerjaan pemrograman menggunakan bahasa MATLAB. anda dapat menggunakan salah satu cara yaitu :
Cara #1 : LanjZsunjZ di Command Window
Zara ini adalah yang paling sering dilakukan oleh pemula, namun mar sulit bagi anda untuk mengevaluasi perintah secara keseluruhan q,z-=r.a biasanya perintah hanya dilakukan baris perbaris.
Untuk membuat program, anda hanya perlu mengetikkan perintah pada prompt Matlab dalam Command Window, misalnya :
>>pjg = 5;
tekan tombol enter, lalu ketikkan :
>>lbr = 10;
tekan tombol enter, lalu ketikkan :
>>luas = pjg*lbr
untuk skrip terakhir sengaja tidak diberikan tanda (;) titik koma, sehingga anda bisa langsung melihat hasil akhir dilayar Command Window.
Hasil akhir yaitu
>>luas =
50
Program telah selesai.
Cara #2 : Menjzkunakan File M
Cara ini biasanya akan dipilih untuk digunakan oleh programmer yang lebih mahir (jangan khawatir dalam beberapa menit kedepan, anda pun akan menjadi salah satu dari kelompok ini (D ). Kelebihan cara ini adalah kemudahan untuk meng-evaluasi perintah secara keseluruhan. Terutama untuk program yang membutuhkan waktu pengerjaan yang cukup lama serta skrip yang cukup
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 24
panjang.
Untuk contoh dapat kita gunakan program yang sebelumnya anda kerjakan dengan cara pertama, dengan tahapan sebagai berikut :
1. Pada Command Window, ketikkan:
>>edit
2. Tekan enter, selanjutnya muncul Matlab Editor dan anda ketiklah program dibawah berikut :
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
% Program latihan 1
% Matlab Programing
% Oleh : Wayan Made Komang
%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
clear all;
clc;
disp (‘‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‘)
disp (‘Program Latihan 1’)
disp (‘‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‘)
pjg = 5;
lbr = 10 ;
luas = pjg * lbr;
disp ([‘luas ‐> ‘ num2str(luas)]);
Anda bingung dengan apa yang barn anda ketikkan? Tidak masalah, kata orang pintar "bingung pertanda mulai belajar", pada bab-bab berikutnya akan anda pelajari dan anda. Akan sangat mengerti dengan apa yang anda ketik. Untuk tahap ini anda ikuti dulu oke!
3. Setelah selesai mengetik program diatas, anda simpan di direktori c1latilhanku, dengan nama latihan0l.m.
4. Anda kembali ke Command Window. Agar Matlab dapat mengenali lokasi tempat file anda tersimpan, pada prompt Matlab ketiklah direktori c:/latihanku pada prompt Matlab :
>>cd c:\latihanku
5. Tekan Enter, lalu ketiklah nama file latihan 01 tanpa ekstensi:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 25
>>latihan01
6. Tekan Enter, selanjutnya program akan dijalankan dan menghasikan sebagai berikut:
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Program Latihan 1
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Luas ‐> 100
Jika tahap enam telah dicapai, maka program pertama telah sukses anda kerjakan. Selamat datang dan bergabung sebagai programmer Matlab.
Manajemen File dan Direktori
Matlab menggunakan metode path searching (pencarian direktori) untuk menemukan file dengan ektensi M yang mengandung skrip dan fungsi. File M MATLAB terorganisir dengan rapi pada beberapa folder/direktori. Urutan pencarian MATLAB dalam menjalankan perintah pada Command Window secara bertahap adalah sebagai berikut, misalnya ketika diberi perintah’kubus’:
• MATLAB mencoba untuk mengenali apakah ‘kubus’ adalah variabel,jika ya, selesai. Jika tidak, maka MATLAB berasumsi bahwa ‘kubus’ adalah sebuah nama file dengan ekstensi M, lanjut ketahap berikutnya.
• Matlab mencoba untuk mengenali apakah’kubus’ merupakan fungsi bawaan standar, jika ya, eksekusi. Jika tidak, lanjut kethp berikutnya.
• Matlab akan mencari file M yang bernama kubus.m pada direktori aktif (current directory), jika ditemukan, eksekusi. Jika tidak lanjut ketahp berikutnya.
• Matlab akan mencari file M yang bernama kubus.m diseluruh direktori yang terdaftar pada daftar pencariannya, jika ditemukan, eksekusi. Jika tidak, Matlab akan menyampaikan pesan sebagai berikut:
>> kubus
??? Undefined function or variabel ‘kubus’
Jika pesan diatas muncul kehadapan anda, maka kesimpulannya hanya ada 2,
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 26
yaitu:
1. Anda salah menulis nama file, atau
2. File anda tidak berada dalam direktori yang diketahui oleh Matlab.
Jika anda yakin nama file yang anda ketikkan benar, maka yang harus anda lkukan juga ada 2 pilihan, yaitu:
1. Memindahkan direktori aktif ke direktori tempat file anda berada.
Misalkan direktori tempa anda menyimpan file adalah c:/latihanku. Maka caranya adalah dengan perintah sebagai berikut:
Tekan enter, maka selanjutnya direktori aktif adalah c:\latihanku.
>>cd c:\latihanku
2. Menambahkan direktori anda ke dalam daftar pencarian direktori Matlab.
Untuk membuka tool yang mengatur pencarian path ini dapat dilakukan dengan cara meng-klik set path pada menu File sebagai berikut:
Selanjutnya akan muncul dialog set path sebagai berikut:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 27
Setelah melakukan pemilihan folder yang diinginkan dengan cara meng klik tombol Add Folder, lalu dilanjutkan dengan meng klik tombol save dan diakhiri dengn tombol Close. Maka direktori anda telah tersimpan didaftar pencarian direktori Matlab.
Jika anda memilih menggunakan cara pertama , maka setiap anda membuka aplikasi Matlab anda harus melakukannya lgi. Tetapi, jika anda memilih cara kedua, maka anda tidak perlu melakukannya lagi pada kesempatan lainnya, kecuali kjika nama direktori anda telah berubah.
Penting
Pemahaman yang benar tentang cara kerja Matlab katika melakukan eksekusi program ini sangat penting. Dari pengalaman penulis, permasalahan yang paling banyak diajukan pada saat penulis melayani konsultasi program adalah yang berhubungan dengan penempatan file program dan penamaan file yang overlap dengan fungsi standar yang dimiliki Matlab.
SOAL:
1. Buatlah dengan program matlab dari luas ruangan pertemuan yang memiliki panjang 12 meter dan lebar 8 meter. Buat dengan menggunakan command windows langsung dan M-file.
2. Buat dengan model M-file ! Suatu silinder memiliki jari-jari 60 cm, dan tinggi dari silinder tersebut 150 cm. hitung luas selimut silinder dan volume silinder jika nilai pi = 3,14.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 28
5.1 Fungsi Matematika Umum
Fungsi matematika umum dalam MATLAB terdiri atas fungsi trigonometri, fungsi eksponensial, fungsi berkait bilangan kompleks serta fungsi pembulatan dan sisa. Pada sub bagian berikut akan diuraikan fungsi-fungsi tersebut lengkap dengan syntax-nya dalam MATLAB. (note: tanda “ “ menunjukkan syntaxnya dan “x” adalah bilangan konstan).
5.1.1 Fungsi trigonometri
Fungsi dasar trigonometri terdiri atas sinus, cosinus dan tangen. Fungsi tersebut dikembangkan menjadi secan, cosecan dan cotangen. Lebih lanjut fungsi-fungsi trigonometri dapat dikembangkan menjadi bentuk hiperbolik. Operasi yang dapat dilakukan pada fungsi tersebut adalah pencarian nilai dan invers (Arcus disingkatArc). Dalam MATLAB, setiap fungsi trigonometri mempunyai syntax tersendiri. Fungsi trigonometri lengkap dengan syntaxnya akan diperlihatkan pads uraian berikut:
• Fungsi sinus
Sinus x sin (x) : Arc sinus x asin (x)
Sinus hiperbolik x sinh (x) : Arc sinus hiperbolik x asinh (x)
• Fungsi cosinus
Cosinus x cos (x): Arc cosinus x acos (x)
Cosinus hiperbolik x cosh (x) : Arc cosinus hiperbollk x acosh (x)
• Fungsi Tangen
Tangen x tan (x): rc tangen x atan (x)
Tangen hiperbolik x tanh (x): Arc tangen hiperbolik x atanh (x)
• Fungsi Secan
Secan x sec (x): Arc secan x asec (x)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 29
Secan hiperbolik x sech (x) : Arc secan hiperbolik asech (x)
• Fungsi Cosecan
Cosecan x csc (x) : Arc cosecan x acsc (x)
Cosecan hiperbolik x csch (x):Arc cosecan hiperbolik x acsch (x)
• Fungsi Cotangen
Cotangen x cot (x) : Arc Cotangen x acot (x)
Cotangen hiperbolik x coth (x) : Arc cotan hiperbolik x acoth (x)
5.1.2 Fungsi eksponensial
Fungsi eksponensial secara matematis mempunyai beberapa bentuk. Pada uraian berikut akan diperlihatkan beberapa fungsi eksponensial lengkap dengan syntax-nya.
• Eksponensial : exp (x) , fungsi ini digunakan untuk mencari nilai ex, dengan e adalah bilangan natural (e=2,718281824459... ).
• Logaritma berbasis bilangan natural (e): elog x atau In x log (x), fungsi ini digunakan untuk mencari nilai logaritma berbasis ex.
• Logaritma berbasis bilangan konstan, misal y: ylog x’ 1ogy (x) , fungsi ini digunakan untuk mencari nilai logaritma berbasis y. Jadi, logaritma berbasis 10 tidak seperti biasanya yaitu ditulis dengan log x saja, tetapi dianggap sebagai bilangan y. Jadi, dalam MATLAB: 101og x ditulis log10 (x).
• Akar pangkat dua: sqrt (x), fungsi ini berguna untuk mencari akar pangkat dua dari x.
5.1.3 Fungsi yang berkait bilangan kompleks
Fungsi yang berkait bilangan kompleks, dalam MATLAB dituliskan dengan penambahan "i" atau"j" dibelakang bilangan pokok. Bilangan kompleks dapat dinyatakan dalam bentuk real atau sebaliknya. Pada uraian berikut diperlihatkan beberapa fungsi eksponensial lengkap dengan syntax-nya.
• Nilai mutlak: , digunakan untuk mencari nilai mutlak bilangan atau
• Nilai riff , digunakan untuk mengambil nilai real dari bilangan kompleks
• Nilai imajiner , digunakan untuk mengambil nilai imajiner dari
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 30
bilangan kompleks
5.1.4 Fungsi pembulatan dan sisa
Fungsi pembulatan dan sisa dalam MATLAB, digunakan untuk menuliskan bilangan rill dalam bentuk bilangan bulat positif atau negatif.
• Pembulatan menuju integer terdekat: round (x) , fungsi ini digunakan untuk membulatkan x ke nilai integer terdekat.
Misal:
round (3.84) menghasilkan 4 dan round (-3.84) menghasilkan -4
round (0. 52) menghasilkan 1 dan round (-0. 52) menghasilkan -1
• Pendekatan menuju nol: fix (x), fungsi ini digunakan untuk membulatkan x ke nilai yang lebih dekat 0.
Misal:
fix (3. 84) menghasilkan 3 dan fix (-3. 84) menghasilkan -3
fix (5.32) menghasilkan 5 dan fix (-5.32) menghasilkan - 5
f ix (0. 52) menghasilkan 0 dan fix (-0.52) menghasilkan 0
• Pembulatan menuju -∞: flor (x) , fungsi ini digunakan untuk membulatkan x ke nilai yang lebih mendekati -∞.
Misal:
flor (3. 84) menghasilkan 3 dan f lor(-3.84) menghasilkan -4
f !or (5.32) menghasilkan 5 dan flor (-5.32) menghasilkan – 5
flor (0.52) menghasilkan 0 dan f lor (-0.52) menghasilkan -1
• Pembulatan menuju +∞: ceil (x), fungsi ini digunakan untuk membulatkan x ke nilai yang lebih dekat +∞.
Misal:
ceil (3.84) menghasilkan 4 clan ceil (-3.84) menghasilkan -4
ceil (5.32) menghasilkan 5 clan ceil (-5.32) menghasilkan -5
ceil (0.52) menghasilkan 4 clan ceil (-0.52) menghasilkan 0
• Sisa setelah pembagian: rem (x, y), fungsi ini digunakan untuk mengambil sisa dari x/y dengan tanda yang sama dengan x.
Misal:
rem (15.2) menghasilkan 1 clan rem (-15.2) menghasilkan -1
rem (-13.5) menghasilkan - 3 dan rem (13.5) menghasilkan 3
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 31
5.2 Format Penampilan Angka
Format penampilan angka dalam MATLAB, digunakan untuk mengatur tampilan hasil perhitungan pada Command Window. Jika hasil perhitungan berupa bilangan bulat, MATLAB akan menampilkan sebagai bilangan bulat, sedangkan bilangan rill, ditampilkan dengan empat bilangan desimal. Tampilan ini dapat diatur dengan format penampilan angka dalam MATLAB. Misal: y = 100/3, dalam kedaan biasa (tanpa pengaturan format) y akan ditampilkan dengan format 33.3333. Berikut ini diuraikan beberapa perintah untuk mengatur penampilan angka pada Command Window lengkap dengan syntax-nya.
• format short: menghasilkan 33.3333
• format long: menghasilkan 33 .333333333334
• format short e: menghasilkan 3.3333e+001
• format long e: menghasilkan 3.333333333334e+001
• format short g: menghasilkan 33.333
• format long g: menghasilkan 33. 333333333333
• format hex: menghasilkan 4040aaaaaaaaaaab
• format bank: menghasilkan 33.33
• format +: menghasilkan +
• format rat: menghasilkan 100/3
Penting untuk diketahui bahwa format penampilan angka dalam MATLAB tidak mengubah representasi internal dari suatu bilangan.
5.3 Array dan Matriks
Array adalah kumpulan data-data scalar yang dinyatakan dalam bentuk baris, kolom dan gabungan antar keduanya. Kumpulan data dengan deret yang tidak teratur mengharuskan pemakai untuk menuliskan data satu per satu. Kumpulan data dengan deret yang teratur dapat diekspresikan dalam bentuk array, sehingga memungkinkan pemakai untuk tidak menuliskannya satu per satu.
Matriks adalah array yang dibangun dari kumpulan persamaan linear. Operasi matriks tidak seperti pada array biasa, melainkan sistem operasi aljabar matriks. Pada pembahasan selanjutnya, matriks diuraikan dengan array data yang teratur, karena akan
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 32
sering dipergunakan pada pemograman tingkat lanjut.
5.3.1 Pembentukan array dan matriks
Array dan matriks ditampilkan dalam bentuk yang sama tetapi representasi internalnya berbeda. Berikut ini adalah perintah untuk membentuk array.
• x=m: n, membuat baris dengan elemen awal m, kenaikan 1 dan elemen akhir n atau sebelum n.
Misal:
Perintah x=1: 10 akan membuat barisan dengan elemen dimulai dari 1, bertambah 1 dan berakhir pada 10.
• x=m: k: n, membuat baris dengan elemen awal m, kenaikan k dan elemen akhir n atau sebelum n.
Misal:
Perintah x=1:2:20 akan membuat barisan dengan elemen dimulai dari 1, bertambah 2 dan berakhir pada 19.
• x=linspace (m, n, k) , membuat baris dengan elemen awal m dan elemen akhir, dengan jumlah elemen sebanyak k.
Misal:
Perintah x=linspace (1, 30,10) akan menampilkan baris dengan elemen awal bernilai 1 dan elemen akhir bernilai 30 dengan jumlah elemen sebanyak 10.
• x=logspace (m, n, k) , membuat baris dengan elemen awal m dan elemen akhir n dengan jumlah elemen sebanyak k dalam skala logaritma.
Misal:
Perintah x=logspace (1, 30,10) akan menampilkan bads dengan elemen awal bemilai 10 dan elemen akhir bemilai 10 dengan jumlah elemen 10.
• x=ones (m) , membuat array segiempat ukuran m x m dengan semua elemennya bernilai 1.
Misal:
Perintah x=ones (5) akan menampilkan array segiempat ukuran 5 x 5 dengan semua elemennya bernilai 1
• x=ones (m, n) , membuat array segiempat ukuran m x n dengan semua elemennya bernilai
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 33
1
Misal:
Perintah x=ones (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan semua elemennya bernilai 1.
• x=zeros (m) , membuat array segiempat ukuran in m x m dengan semua elemennya bernilai 0.
Misal:
Perintah x=zeros (5) akan menampilkan array segiempat ukuran 5 x 5 dengan semua elemennya bernilai 0.
• x=zeros (m, n) , membuat array segiempat ukuran m x n dengan semua elemennya bernilai 0.
Misal:
Perintah x=zeros (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan semua elemennya bernilai 0.
• x=rand (m, n) , membuat array segiempat ukuran m x n dengan elemen-elemennya berupa bilangan random yang terdistribusi uniform dengan interval 0,0 sampai 1,0.
Misal:
Perintah x=rand (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan elemen-elemennya berupa bilangan random yang terdistribusi uniform dengan interval 0,0 sampai 1,0.
• x=randn (m, n) , membuat array segiempat ukuran m x n dengan elemen-elemennya berupa bilangan random yang terdistribusi normal dengan mean = 0 dan variasi = 1.
Misal:
Perintah x=randn (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan elemen-elemennya berupa bilangan random yang terdistribusi normal dengan mean = 0 dan variasi = 1.
Array dapat dinyatakan dalam bentuk matriks dengan memasukkan semua perintah pada ruas kanan ke dalam kurung komutasi. Misal: array x=m: n dapat dinyatakan dalam bentuk matriks dengan perintah x= [m: n] .
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 34
5.3.2. Operasi array
Operasi array merupakan operasi skalarterhadap elemen-elemennya. Misal diketahui suatu data:
a= [a, a2 a3…an ] ;b = [bI b 2 b 3… bn.]; c = c, operasi array yang dapat dilakukan adalah:
• Penambahan skalar: a+c=[a1+c a2+c a3+c ... an+c]
• Perkalian skalar: a*c= [al*c a2*c a3*c ... an*c]
• Penambahan array: a+b= [al+bl a2+b2 a3+b3 ... an+bn]
• Perkalian array: a. *b= [al*bl a2*b2 a3*b3...an*bn]
• Pembagian kanan array: a. /b= [al/bl a2/b2 a3/b3...an/bn]
• Pembagian kiri array: a. \b= [al\bl a2\b2 a3\b3 ... an\bn]
• Pemangkatan array-skalar-.a.^c=[al^c a2^c a3^c ... an^c]
• Pemangkatan skalar-array:c. ^a=[c^ai c^a2 c^a3 ... c^an]
• Pemangkatan array-array: a. ^b= [al^bi a2^b2 a3 ^b3 ... an^bn]
5.3.3 Operasi matriks
Operasi pada matriks dilakukan dengan menggunakan prinsip aljabar matriks. Berikut ini diuraikan beberapa operasi matiks.
• Transpose matriks: X = A => At X=A'
• Penjumlahan matriks: X = A => At X=A+B.
• Pengurangan matriks: X = A => At ---> X=A-B.
• Perkalian matriks: X = A => At --->X=A*B.
Operasi matriks lainnya seperti invers, determinan dan sebagainya dapat dilakukan jika syarat-syarat aljabar matriks terpenuhi. Bentuk seperti ini sering digunakan dalam analisis numerik untuk fisika komputasi.
5.3.4 Manipulasi array dan matriks
Manipulasi terhadap array dan matriks dapat mereduksi kerumitan metode komputasi. Misal dalam perhitungan numerik diketahui array data dengan variable induk A yang terdiri atas gabungan antara baris dan kolom. Array tersebut dapat dimodifikasi dengan perintah pengalamatan.
•A (i, j),mengalamati sub array A dengan indeks baris i dan kolom j.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 35
•A (i, :), mengalamati sub array A pada semua kolom j.
•A(:, j), mengalamati sub array A dengan semua baris pada kolom j .
• A(:), mengalamati sub array A dengan semua baris pada semua kolom.
Pengalamatan yang dilakukan terhadap elemen array dapat digunakan untuk pangalamatan elemen matriks dengan ketentuan array tersebut sebelumnya telah dinyatakan dalam bentuk matriks.
5.4 Konsep Dasar Kontrol Program
Perhitungan komputasi dengan deret teratur dalam MATLAB dapat dilakukan dengan statement tertentu. Statement tersebut untuk menyatakan kondisi, pemberhentian operasi dan iterasi. Statement-statement ini sering dikenal dengan nama kontrol program.
Kontrol program sangat berguna, karena memungkinkan perhitungan sebelum kondisi tertentu mempengaruhi perhitungan selanjutnya dalam satu kesatuan program. Kontrol program mempunyai fungsi dan keunggulan tersendiri bergantung pada kebutuhan pemrograman.
5.4.1 Statement if
Statement if akan mengeksekusi sekumpulan instruksi apabila suatu kondisi yang diisyaratkan bemilai benar. Statement if diakhiri dengan end. Jika ada kondisi yang berlawanan (false), statement if dapat diikuti dengan statement else atau elseif.
Contoh 1:
x=input('Masukan bilangan bulat x=')
if rem(x,2)==0
X=' == GENAP==’
else
X=' == GANJIL =='
end
Contoh 1 akan mengidentifikasi sifat bilangan X, apakah termasuk bilangan ganjil atau genap.
5.4.2 Statement switch
Statement switch akan mengeksekusi sekumpulan instruksi didasarkan pada nilai dari suatu ekspresi atau variabel. Statement switch diikuti dengan case
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 36
dan otherwise untuk menunjukan suatu group dalam looping. Statement ini diakhiri dengan end.
Contoh 2:
clear;
X=input ('masukkan bilangan bulat X=');
Y=input (Imasukkan pembagi Y=');
Sisa=rem(X,Y)
switch Sisa
case 10
NilaiSisa='A'
case 11
Nilaisisa='B'
Case 12
Nilaisisa='C'
case 13
Nilaisisa='D'
case 14
Nilaisisa='E'
otherwise
NilaiSisa=int2str(sisa)%konversi integer ke string end;
Contoh 2 mengambil sisa pembagi dari X/Y kemudian dikelompokkan dalam bentuk abjad. Jika program tersebut dijalankan, pada Command Window akan tampil 6 kemungkinan, yaitu:
• Jika Sisa=10, maka Nilaisisa=A
• Jika Sisa=11, maka Nilaisisa=B
• Jika Sisa=12, maka Nilaisisa=C
• Jika Sisa=13, maka Nilaisisa=D
• Jika Sisa=14, maka Nilaisisa=E
• Jika Sisa=bilangan lain, Nilaisisa=Sisa
5.4.3 Statement for
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 37
Statement for digunakan untuk mengulang sekumpulan instruksi hingga n kali (notasi n adalah bilangan integer yang telah diidentifikasi sebelumnya). Statement for diakhiri dengan end.
Contoh 3:
X=rand(50,1)
Xmax=realmin
for i=1:50
if X(i)>Xmax
Xmax=X(i)
end;
end;
Contoh 3 memperagakan cara mencad nilai terbesar dad array X. Nilai tersebut akan disimpan dalam variabel Xmax
5.4.4 Statement while
Statement while mengerjakan sekelompok perintah yang diulang secara tidak terbatas. Statement while diakhiri dengan end. Perintah antara loop while dan end dieksekusi berulang kali selama semua elemen dalam ekspresi bernilai benar.
Contoh 4:
hitungan=0; X=1:
while (1+X)>l
X=X/2
hitungan=hitungan+l
end
Contoh 4 memperagakan cara menghitung nilai terkecil yang dapat ditambah pada 1 sedemikian hingga hasilnya lebih besar dari dengan menggunakan presisi hingga. Selama (1 +X) > 1 benar, perintah yang terdapat dalam loop while akan dikerjakan terns menerus. Karena X terus menerus dibagi 2, maka X semakin kecil hingga didapat suatu kondisi yang unik, yaitu penambahan X pada 1 tidak mendapatkan hasil yang lebih besar dari 1 menurut hitungan komputasi. Jika kondisi tersebut terpenuhi, maka loop while berhenti bekerja atau kondisi (1+X)> 1 bernilai salah. Kondisi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 38
tersebut dicapai pada hitungan ke-53.
5.4.5 Statement break
Statement break digunakan untuk keluar lebih awal dari suatu loop for dan while jika kondisi yang diinginkan sudah tercapai. Melanjutkan contoh sebelumnya untuk mencari nilai terkecil yang tidak merubah nilai 1 jika ditambah X, persoalan tersebut dikerjakan pada loop for dan if dengan urutan 1 sampai 1000. sebelumnya sudah diketahui bahwa kondisi yang diinginkan akan tercapai pada hitungan ke-53, tetapi komputer tidak berhenti karena loop for menginstruksikan perhitungan sampai pada step ke-1000. Statement break digunakan untuk menghentikan looping for.
Contoh 5:
X=1
for hitungan=1:1000
X=X/2;
if (1+X)<=1
X=X+2
hitungan=hitungan
break
end
end
Dalam kasus ini hitungan hanya melompati struktur yang ditempati. Jadi, pada loop bertingkat statement break harus dibuat tersendiri.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 39
6.1 Membangun Data
Dalam beberapa kasus program sering ditemui penggunaan data inisial dalam bentuk matrik atau array, misalnya matrik nol, matrik identitas dan lain-lain.
Secara sederhana MATLAB menyediakan beberapa teknik untuk membangun data dengan cepat, sebagai berikut:
• Membangun data dengan elemen yang telah ditentukan
Misalnya anda akan membangun data x dengan nilai yang telah diketahui, maka cara penulisannya sebagai berikut:
Untuk data vektor baris
Untuk data vektor kolom
Untuk data bentuk matrik
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 40
• Membangun data dengan batas awal dan batas akhir
Misalnya anda ingin membuat data sudut dari sudut 30 derajat samapi 35 derajat, maka cara penulisannya adalah sebagai berikut:
• Membangun data dengan batas awal, increment dan batas akhir
Misalnya anda ingin membuat data sudut dari sudut 30 derajat samapi 90 derajat dengan pertambahan 10, maka cara penulisannya adalah sebagai berikut:
• Membangun data dengan batas awal dan batas akhir, tetapi jumlah data ditentukan.
Misalnya anda ingin membuat data 5 buah sudut dalam interval sudut 30 derajat sampai 90 derajat, maka cara penulisannya adalah sebagai berikut:
• Membangun data logaritma dengan batas awal dan batas akhir, tetapi jumlah data ditentukan.
Misalnya anda ingin membuat data 5 nilai yang berada dalam interval 102 dan 104, maka caranya adalah sebagai berikut:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 41
• Membangun data menggunakan standar matrik MATLAB.
Cara membuat data matrik dengan semua elemen bernilai 1:
Cara membuat data matrik dengan semua elemen bernilai 0:
Membuat data matrik identitas, caranya sebagai berikut:
• Membangun data Random
Data random sangat penting digunakan dalam pemrograman, khususnya bidang pemodelan matemtika. MATLAB menyediakan cara cepat untuk membangkitkan data random sebagai berikut:
Terlihat bahwa data random yang dihasilkan berada dlama interval 0 dan 1. Lalu bagaimana caranya untuk membangkitkan data random dengan interval lainnya, misalnya ineterval 5 dan 7?
Berikut ini adalah sintak membangkitkan data random dengan interval:
Variabel = (akhir‐(rand()*(akhir‐awal)))
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 42
Contoh pemakaian dalam program adalah sebagai berikut:
6.2 Orientasi dan Augmentasi data
Merubah orientasi dan menempelkan data (data augmented) sangat umum digunakan dalam program. Pada bahasa pemrograman yang lain mungkin hal tersebut menjadi gampang-gampang sulit. Tetapi tentu saja pada MATLAB hal tersebut menjadi sangat-sangat mudah.
• Mengubah Orientasi data dengan Transpos
• Menempelkan data pada baris
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 43
• Menempelkan data pada kolom
6.3 Pengurutan Data
Teknik pengurutan data sangat sering digunakan dalam program pengolahan data. MATLAB menyediakan fungsi khusus yaitu sort untuk melakukan pengurutan. Menggunakan sort dapat dengan dua cara. Cara pertama digunakan untuk mengurutkan data pada arah kolom, sintaknya sebagai berikut:
var2=sort (var1,1)
var1 adalah matrik atau vektor yang akan diurutkan. Berikut adalah cara menggunakannya dalam program:
Cara kedua digunakan untuk mengurutkan data pada arah baris, sintaknya sebagai berikut:
var2= sort(var1,2)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 44
Var1 adalah matrik atau vektor yang akan diurutkan. Berikut adalah cara menggunakannya dalam program:
6.4 Menyeleksi Data
Melakukan pemrograman untuk pengolahan data, pasti tidak luput dari seleksi data. Menyeleksi data berarti menggunakan sebagian data dari sebuah data yang lengkap tanpa merusak ukuran maupun nilai data tersebut. Untuk melakukan seleksi data, anda dapat mempergunakan ekspresi matematika =, =,>,>=,< dan <=.
Cara menyeleksi data untuk mengambil nilai elemen dari sebuah matrik, adalah sebagai berikut:
Program diatas maksudnya adalah menyeleksi elemen pada data a, dengan syarat elemen tersebut lebih besar dari 7, lalu hasilnya disimpan pada variable b.
Cara kerja seleksi data adalah membangkitkan matrik bernilai 0 dan 1, sesuai kondisi yang diberikan, jika memenuhi kondisi, elemen matrik bernilai 1, jika tidak, maka elemen matrik bernilai 0.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 45
>> c = (a ~ =7)
C =
1 1 1
1 1 0
0 1 1
Maka untuk mendapatkan nilai yang terseleksi, kalikan hasil diatas dengan data asal. Gunakan perkalian elemen!!
>> c =(a~=7)*a
c =
2 3 1
9 6 0
0 9 5
Banyak kemudahan yang ditawarkan MATLAB, namun efektifitas pemrogramannya hanya akan tercapai jika kita mampu menerapkan metode-metode manipulasi data dalam skrip program. Umumnya programmer yang memiliki dasar pemrograman procedural mengabaikan hal ini, sehingga efektifitas penulisan skrip dan kecepatan proses runtime tidak diperoleh secara maksimal.
Dengan menggunakan teknik-teknik manipulasi diatas, sebisa mungkin hindari pemakaian control flow (perulangan dan kondisional) yang melibatkan operasi elemen-elemen data seperti pada pemrograman konvensional. Karena walaupun MATLAB menyediakan fasilitas untuk itu, MATLAB tidak didesain untuk hal tersebut. Akibatnya waktu yang digunakan MATLAB untuk menjalankan program anda akan cukup lama.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 46
7.1 Perintah Dasar menggambar Grafik
Program MATLAB mempunyai fasilitas menggambar hasil perhitungan komputasi secara grafis. Instruksi yang bisa digunakan untuk menggambar grafik, sebagian diantaranya telah dibahas pads tutorial Bab 1. Pada bab ini akan dibahas berbagai Instruksi untuk menggambar grafik dalam MATLAB.
Elemen dasar yang dibutuhkan untuk menggambar grafik adalah data dalam bentuk array. Misal, MATLAB diberi perintah membuat arraydalam bentuk sudut Ɵ dari 0 sampai 2 sebanyak 30 data. Dalam MATLAB, array tersebut dinyatakan dengan variabel Theta untuk menentukan nilai x= sinƟ. Persoalan seperti ini dapat dibuat dalam MATLAB dengan listing program:
Theta=linspace(0,2*pi,30)
X=sin(Theta)
Program ini dapat dilengkapi dengan syntax untuk menggambar grafik fungsi sinus. Instruksi yang boleh digunakan adalah:
• Plot: (Theta): menggambar grafik Ɵ tehadap indeksnya.
• Plot (Theta, x) : menggarnbar grafik x terhadap Ɵ, dengan syarat panjang array data Ɵ dan x sama.
• Plot (Theta, x,bt-cing). menggambar grafikx, terhadap Ɵ, dengan karakter berupa string. Karakter string boleh berupa: warna, tipe titik data dan tipe garis penghubung titik data dari grafik yang di-plot.
Sebagai contoh, akan digambar fungsi sinus 1 periode terhadap data Ɵ dengan karakteristik:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 47
warna: merah (r=red), tipe titik data: lingkaran (o) dan tipe garis penghubung data: titik-titik ( : ). Program sederhana untuk problem ini adalah:
Theta=linspace(0,2*pi,30)
X=sin(Theta)
Plot(Theta,x,'ro:')
Grafik yang dihasilkan dipedihatkan pada Gambar dibawah:
Gambar 7.1 Contoh plot grafik sinus
Karakteristik grafik pada Gambar 5.1 dapat dimodifikasi dengan string seperti pada Tabel dibawah:
Warna
Simbol
Titik data
Simbol
Garis
penghubung data
Simbol
merah
r
titik
.
garis lurus
-
biru
b
lingkaran
o
titik-titik
:
kuning
y
tanda silang
x
garis-titik
-.
hijau
g
tanda plus
+
garis putus-putus
- -
ungu
M.
tanda bintang
*
putih
w
tanda kotak
s
hitam
k
tanda berlian
d
biro muda
c
tanda pentagram
tanda heksagram
p
h
Tabel 7.1 Karakter string pada grafik
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 48
7.2 Memberi Judul dan Label Pada Grafik
Grafik pads Gambar 5.1 belum mempunyai judul pada bagian atas dan label pada setiap sumbu. Perintah untuk memberi judul dan label adalah:
• title('text','fontsize',size,'fontname','name')
• xlabel('text','fontsize',size,'fontname','name')
• ylabel(‘text’,’fontsize',size,’fontname’,’name’)
• zlabel('text','fontsize',size,'fontname','name')
Dengan text adalah nama judul atau label, fontsize adalah perintah pengaturan ukuran huruf, size adalah ukuran huruf, fontname adalah perintah pengaturan jenis huruf, name adalah jenis huruf. Sebagai contoh, grafik pada Gambar 5.1 dapat dilengkapi dengan instruksi berikut:
Theta=linspace(0,2*pi,30)
x=sin(Theta)
plot(Theta,x,'ro:')
title (‘Grafik fungsi sinus’,’fontsize’,12,’fontname’,’Arial’)
x1abel (' Sudut dalam radian’,’fontsize',10,’fontname’,'Arial’)
ylabel('Nilai sinus' ,'fontsize', 10, ‘fontname’, 'Arial’)
Dengan menjalankan program ini, akan diperoleh sebuah grafik lengkap dengan keterangannya seperti pada Gambar dibawah:
Gambar 7.2 Grafik fungsi sinus 1 periode lengkap dengan judul dan label
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 49
7.3 Memberi Grid dan Legend
Perintah grid dan legend digunakan untuk memberi grid dan legend pada grafik. Misal, diketahui fungsi sinus 1 periode y1 = sin t. Fungsi tersebut mengalami pergeseran sejauh y2 =sin(t+1/2)dan y3=sin(t+1/4). Ketiganya dapat digambarkan dalam satu grafik yang dilengkapi grid dan -legend.
clear;
t=0:pi/100:2*pi
y1=sin(t)
y2=sin(t+0.5)
y3=sin(t‐0.25)
plot(t,y1,'r‐',t,y2,'b:',t,y3,'m–')
title (‘Grafik fungsi
sinus','fontsize',16,'fontname','Arial')
xlabel('Sudut dalam
radian','fontsize',14,'fontname','Arial')
ylabel('Nilai
sinus','fontsize',14,'fontname','Arial')
grid
legend('t','t+0.5','t‐0.25')
Jika program tersebut dijalankan, akan diperoleh grafik seperti Gambar dibawah:
Gambar 7.3 Grafik fungsi sinus lengkap dengan grid dan legend
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 50
7.4 Membentuk Subplot
Perintah subplot digunakan untuk menggambar lebih dari 1 grafik dalam 1 plot. Dalam MATLAB, perintah ini ditulis subplot (mnp). Elemen m dan n menunjukkan banyaknya baris dan kolom dalam ruang plot, sedangkan p menunjukkan posisi dalam ruang plot. Cara termudah untuk memahami posisi dalam ruang plot adalah menganggapnya sebagai elemen matriks Aij. Misal, diketahui 4 buah fungsi, yaitu:
•
•
•
•
Fungsi-fungsi ini terdiri atas 4 buah. Jadi, harus di-plot dalam ruang 2 x 2 dengan perintah dasar subplot (22p). Posisi masing-masing subplot adalah p, dengan p=l, 2, 3, 4. Setiap posisi p terletak pada elemen-elemen matriks secara berturut-turut dari baris 1 kolom 1 ke kolom berikutnya, dilanjutkan dengan baris berikutnya dengan urutan yang sama dimulai pada baris 1.
Fungsi-fungsi yi (i =1,2,3,4) pads kasus ini, mempunyai posisi: p=1: A11; p=2: A12 ; p=3: A21 ; p=4: A22.
%Program dengan subplot
%By: NAMA ANDA
clear;
x=0:0.01:10
yl.x+10*ones(l,length(x))
Y2=x.'2+x+10*ones(l,length(x))
Y3=x.'3+x.'2+x+10*ones(l,length(x))
y4‐x.'4+x.'3 +X.A 2+x+10*ones(l,length(x))
%Grafik yl subplot(221) plot(x,yl);grid;
title('Grafik fungsi linear') xlabel(IxI);Ylabel(Ix+101)
%Grafik y2 subplot(222) plot(x,y2);grid;
title('Grafik fungsi kuadrat')
xlabel(lxl);ylabel (,XA 2+x+101)
%Grafik y3 subplot(223) plot(x,y3);grid;
title('Grafik fungsi pangkat 3') xlabel(lxl);Ylabel(lx'3+x'2+x+101)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 51
%Grafiky4
subplot(224) plot(x,y4);grid;
title('Grafik fungsi pangkat 4') xlabel('x');ylabel('x'4+x.^3+x^2+x+101)
Dengan menjalankan program tersebut, akan diperoleh 1 grafik dalam 1 Figure Window seperti pada Gambar dibawah:
Gambar 7.4 Contoh Sub Grafik
7.5 Menggambar Grafik Tiga Dimensi
Bagian sebelumnya dalam bab ini, menguraikan cara menggambar grafik 2 dimensi. Selain graft 2-dimensi dikenal pula graft 3-dimensi. Syarat utama untuk menggambar grafik 3-dimensi adalah array yang terdiri atas 3 pasangan data dengan panjang yang sama. Berikut ini akan diuraikan beberapa syntax dasar untuk menggambar grafik 3--dimensi, yaitu:
• plot (x, y, z) : menggambar grafik yang merupakan pasangan array data pada vektor x, y dan z.
• plot (x, y, z, S) : menggambar grafik yang merupakan pasangan array data pada vektor x, y dan z, serta menggunakan karakter s.
• plot (X,Y,Z) : menggambar grafik yang merupakan pasangan array data berupa
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 52
kolom pada matriks X, Ydan Z.
• plot (X,Y,Z,S): menggambar grafik yang merupakan pasangan array data berupa kolom pada matriks X, Ydan Z, serta menggunakan karakter S.
Karakter s adalah warna, tipe titik data dan tipe garis penghubung data. Uraian selengkapnya tentang karakter s diperlihatkan pada Tabel 7.1.
7.5.1 Grafik garis tiga dimensi
Grafik gari 3 dimensi merupakan pengembangan perintah dasar plot, dari 2-satuan data menjadi 3-satuan data. Program berikut akan menghasilka grafik seperti gambar 5.5
clear
t=0:pi/50:10*pi;
x=sin(t);
y=cos(t);
plot3(x,y,t);
title(‘GRAFIK HELIX’,’fontsize’,20,’fontname’,’Arial’);
xlabel(‘sin(t)’,’fontsize’,16,’fontname’,’Arial’);
ylabel(‘cos(t)’,’fontsize’,16,’fontname’,’Arial’)
xlabel(‘t’,’fontsize’,16,’fontname’,’Arial’)
Gambar 7.5 Contoh Grafik Helix
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 53
7.5.2 Grafik jala dan permukaan
Grafik jala merupakan koordinat z dari sebuah titik diatas grid segiempat pada bidang x-y yang menyerupai jala. Grafik jala dihasilkan dengan syntax mesh (z). Array data yang divisualisasikan adalah vector x berukuran n, vector y berukuran m dan matriks z berukuran m x n. Titik data yang tergambar merupakan pasangan {x(i),y(j),z(i,j)}, dengan x berhubungan dengan kolom-kolom z dan y berhubungan dengan baris-baris z. Sebagai contoh, program berikut akan menghasilkan grafik seperti pada Gambar 5.6
x=‐1:.1:2;
y=0:.1:5;
for i=1:length(x)
for j=1: length (y)
Z(i,j)=sin (x(i)*y(j))+cos(‐x(i)*y(j))+10;
end
end
surf(x,y,Z)
mesh(Z)
xlabel (‘x’,’fontsize’,14,’fontname’,’Arial’);
ylabel (‘y’,’fontsize’,14,’fontname’,’Arial’)
zlabel (‘z=sin(xy)+cos(‐xy)+10’)
Gambar 7.6 Grafik permukaan hasil surf(Z)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 54
SOAL:
1. Lakukan modifikasi terhadap program pada tutorial nomor 1, kemudian buat program untuk menggambarkan fungsi sinus, cosinus, tangen dan cotangen untuk kasus 2 periode dalam 1 Figure Window.
2. Spektroskopi nuklir merupakan instrumen yang berfungsi untuk mengetahui karakteristik spektrum energi radiasi. Pengaruh energi yang dipancarkan nuklida radioaktif terhadap tegangan keluaran sistem spektroskopi nuklir diketahui melalui tinggi pulsa yang tampak pada osiloskop. Misal, diketahui data pengamatan seperti pada Tabel 5.2, sedangkan data energi pada Tabel 5.2 merupakan standar kalibrasi dari Laboratory Education and Training, National Atomic Energy Agency-From JRIA Book. Perkiraan kesetaraan energi disesuaikan dengan kecenderungan bahwa pulsa tertinggi pada osiloskop sama dengan tingkat energi tertinggi. Pengamatan selanjutnya dilakukan pada unsur yang belum diketahui (Tabel 5.3). Besaran yang diamarti adalah energi yang dipancarkan nuklida akibat perubahan tegangan keluaran sistem spektroskopi nuklir. Perkiraan kesetaraan ditentukan berdasarkan posisi puncak energi pada display layer terhadap tegangan yang terbaca pada osiloskop. Jika diketahui data pengamatan seperti Tabel 5.3, buatlah grafik hubungan antara besar energi nuklida radioaktif terhadap tegangan listrik yang ditimbulkan (Tabel 5.2) dan hubungan antara tegangan terhadap energi radiasi (Tabel 5.3). Gunakan perintah stem (X, Y) untuk menggambar kedua grafik tersebut. Gambarlah kedua grafik dalam 1 figure window dengan bantuan perintah hold on untuk menampilkan array data dalam 1 grafik. Lakukan analisis lebih lanjut untuk menentukan unsur yang belum diketahui (unknown). Tebaklah unsur apakah yang sedang diamati?. (Petunjuk: Gunakan X:Tegangan dan Y. Energi.!)
Tabel 5.2: Pengaruh energi terhadap tegangan
No
Nuklida
Energi (keV)
Tegangan (Volt)
1
Ba-133
302
1,8
2
Cs-137
662
3,6
3
Na-22
1275
5,8
4
Co-60
1332
6,0
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 55
Tabel 5.3: Pengaruh Tegangan terhadap energy radiasi
No
Tegangan (Volt)
Energi (keV)
1
1,0
25
2
1,5
49
3
2,0
214
4
2,5
276
5
3,0
340
6
3,5
390
7
4
457
8
5
571
9
6
679
10
7
819
11
8
911
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 56
8.1 Akar persamaan
Akar-akar persamaan adalah bilangan yang merepresentasikan titik potong kurva polinomial terhadap variabel bebasnya. Pada bagian ini akan diuraikan beberapa metode penentuan akar-akar persamaan. Polinomial berderajat dua atau biasa disebut persamaan kuadrat dinyatakan dalam bentuk
y = ax2+bx+c ................................................................(8.1)
Akar-akar persamaan (4.1) dapat ditentukan secara analitik dengan formula ……………………………………………..(8.2)
sedangkan persamaan dengan derajat lebih tinggi, akar-akarnya tidak dapat ditentukan dengan persamaan (4.2), misalnya:
Persamaan-persamaan tersebut hanya bisa diselesaikan dengan metode numerik. Metode ini merupakan cara penyelesaian dengan teknik perkiraan tertentu sampai diperoleh hasil yang mendekati penyelesaian eksak. Penyelesaian numerik diselesaikan dengan pendekatan berurutan (iterasi) sedemikian hingga hasil yang diperoleh pada setiap step lebih teliti dari sebelumnya. Dengan melakukan sejumlah prosedur iterasi yang dianggap cukup, akan didapat hasil perkiraan yang mendekati nilai eksak dengan toleransi kesalahan yang diperkenankan.
Metode paling sederhana untuk mendapatkan penyelesaiaan perkiraan adalah dengan menggambarkan fungsi f(x) kemudian menentukan titik potongnya terhadap sumbu x. Titik
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 57
potong tersebut menunjukan akar persamaan dari fungsi yang digambarkan (Gambar 4.1). Metode lain yang lebih sederhana untuk menyelesaikan persamaan kuadrat adalah metode coba banding. Prosedur metode ini adalah mencoba nilai x sebarang, kemudian dievaluasi apakah f(x) = 0. Jika nilai x tidak sama dengan nol, maka dicoba dengan nilai yang lain sedemikian hingga diperoleh nilai f(x) = 0. Nilai yang membuat f(x) = 0 merupakan akar persamaan. Kedua cara sederhana yang diuraikan sepintas tidak efisien dan sistematis. Ada beberapa metode yang juga merupakan perkiraan, tetapi lebih sistematis untuk menghitung akar-akar persamaan. Metode-metode tersebut akan diuraikan pada bagian-bagian berikutnya dalam bab ini.
Gambar 8.1: Akar persamaan dari fungsi f(x)
8.2 Metode Setengah Interval
Metode setengah interval biasa disebut metode bagi dua atau metode bisection. Prosedur yang dilakukan untuk menyelesaikan persamaan dengan metode setengah interval adalah:
1. Menghitung fungsi pada interval yang sama dari x sampai diperoleh perubahan tanda untuk fungsi f(x) dan , yaitu x (xn+1) < 0.
2. Melakukan estimasi pertama terhadap akar x, yang dihitung dengan formula …………………………………………………………………….(8.3)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 58
3. Membuat evaluasi untuk menentukan sub interval (Gambar 4.2) tempat akar persamaan berada dengan kriteria:
• Jika f(x) x f(xn+1) < 0, akar persamaan berada pada sub interval pertama,
jadi xn+1=xt → hitungan dilanjutkan pada langkah ke-4.
• Jika f(x) x f(xn+1) < 0, akar persamaan berada pada sub interval kedua,
jadi xn =xt → hitungan dilanjutkan pada langkah ke-4.
• Jika f(x) x f(xn+1) < 0, akar persamaan adalah xt → hitungan selesai.
4. Menghitung perkiraan akar baru dengan formula1 …………………………………………………………….(8.4)
5. Jika perkiraan akar baru cukup kecil atau sesuai dengan target awal dalam batasan yang dapat diterima, hitungan dianggap selesai dengan x, adalah akar persamaan. Jika perkiraan belum kecil, hitungan diulang dari langkah ke-3 sampai diperoleh hasil yang sesuai dengan target awal.
Prosedur hitungan dalam bentuk graft dan flow chart diperlihatkan pada Gambar 6.2 dan Gambar 6.3.
Gambar 8.2: Prosedur hitungan metode setengah interval
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 59
Gambar 8.3: Bagan alir metode setengahn interval
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 60
Contoh 1:
Hitung salah satu akar persamaan polynomial orde 3 berikut.
Penyelesaian:
Akar-akar Persamaan ini dihitung dengan prosedur berikut:
1. Menghitung fungsi pada interval awal, misal x1 =1 dan x2 = 2, sehingga diperoleh:
• f(x)=(1)3 +(1)2-3(l)-3=-4
• f (x2) = (2)3 + (2)2 — 3(2) — 3 = 3
Karena fungsi f(x) kontinu, berarti perubahan tanda antara x1 dan x2 pada fungsi tersebut akan memotong sumbu x paling tidak 1 kali.
2. Menghitung estimasi sub interval pertama, yaitu:
•
• f(x3) = (1,5)3 + (1,5) 2 + 3(1,5) – 3 = 0,18750
3. Menentukan sub interval berikutnya dengan memilih salah satu titik awal yang berbeda tanda dengan f(x3 ). Jadi f(x4) adalah adalah sub interval antara f(x3 ) dan f(x4) (Gambar 4.2).
4. Menghitung fungsi pada interval (x3) dan (x2)' yaitu:
•
• f(x4) = (1,75)3 + (1,75)2 — 3(1,75) — 3 = 0,1719
5. Hitungan diulangi dari point 3 dengan sub interval yang semakin rapat.
Step 1 sampai 5 disebut 1 iterasi. Prosedur perhitungan yang telah dilakukan dengan hasil f(x4) = 0,1719 disebut iterasi pertama. Dari prosedur ini terlihat bahwa nilai f(x4) belum kecil atau belum mendekati nol. Nilai seperti ini dalam perhitungan dengan metode setengah interval dianggap belum merepresentasikan akar persamaan, sehingga perlu dilakukan perhitungan lebih lanjut berdasarkan bagan alir pada Gambar 8.3. Hasil perhitungan yang diperoleh pada prosedur tersebut diperlihatkan pada Tabel 8.1. Prosedur perhitungan ini sangat mudah dilakukan tetapi tidak efisien, karena membutuhkan iterasi yang cukup panjang.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 61
Tabel 8.1 Prosedur Perhitungan
8.3 Metode Regulasi Falsi
Metode regulasi falsi boleh diartikan metode posisi palsu karena metode ini memberikan posisi palsu akar w berdasarkan titik perpotongan garis lurus yang melalui (x1,f(x1)) dan (x2,f(x2)) dengan tanda yang berbeda dan kontinu. Dari titik tersebut dapat dilakukan interpolasi linear, sehingga metode ini juga sering disebut metode interpolasi linear. Dengan metode ini akar-akar persamaan fungsi yang ditinjau lebih cepat diperoleh tanpa iterasi yang cukup panjang. Metode ini lebih efektif jika dibandingkan dengan metode setengah interval.
Perhitungan akar-akar persamaan dengan metode regulasi falsi dilakukan dengan prosedur berikut:
1. Menentukan fungsi pada interval x yang sama sampai diperoleh perubahan tanda dari fungsi f(x) dan f(xn+1) atau f(x)x(xn+1)<0 (Gambar 8.4).
2. Dari kedua nilai fungsi f(x) dan f(xn+1) ditarik garis lurus sehingga terbentuk segitiga sebangun yang memenuhi Persamaan (8.5) dan (8.6).
.………………………………………(8.5)
………………………….(8.6)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 62
Jadi langkah ke-2 adalah menentukan w menggunakan persamaan (8.6) dan nilai fungsi f (w).
3. Melakukan evaluasi terhadap fungsi f (w) dan f (xn+1 ) untuk menentukan sub interval tempat w berada (Gambar 6.4) dengan kriteria:
• jika f (w) x f (xn+1 ) < 0, akar persamaan berada pada sub interval pertama, jadi xn+1 = w → hitungan dilanjutkan pada langkah ke-4.
• jika f(w) x f(xn+1) > 0, akar persamaan berada pada sub interval kedua, jadi xn = w → hitungan dilanjutkan pada langkah ke-4.
• jika f (x) x (xn+1 )= 0, akar persamaan adalah w → hitungan selesai.
4. Melakukan interpolasi baru menggunakan persamaan:
…………………………(8.7)
5. Jika f(w*) cukup kecil atau f (w*)≈ 0 perhitungan dinyatakan selesai dengan w* adalah akar persamaan. Jika f(w*) belum kecil, perhitungan diulangi dari langkah ke -3.
Gambar 8.4. Prosedur hitungan metode regulasi falsi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 63
Gambar 8.5. Bagan alir metode regulasi falsi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 64
Contoh 2:
Hitung akar dari persamaan seperti pada Contoh 1, yaitu
f(x) = x3 + x2- 3x - 3 = 0
Penyelesaian:
Prosedur berikut adalah penyelesaian dengan metode regulasi falsi.
1. Menghitung fungsi pada interval awal, misal x1 =1 dan x2 = 2, sehingga diperoleh:
• f(x1)=(1)3 + (1)2 – 3(1) – 3 = 4
• f(x2)=(2)3+(2)2-3(2)-3=3
Karena fungsi f(x) kontinu, berarti perubahan tanda dari fungsi antara x1 dan x2 akan memotong sumbu x paling tidak satu kali.
2. Menghitung estimasi posisi palsu pertama, yaitu:
•
• f(w1)=(1,57142)3 + (1,57142)2 -3(1,57142)-3 = -1,36449
3. Menentukan posisi palsu berikutnya dengan memilih salah satu titik awal yang berbeda tanda dengan f(wl). Jadi, f(w2) adalah posisi palsu antara f (w1) dan f(x2) (Gambar 6.5).
4. Menghitung fungsi pada interval (w2 ) dan (x2 ), yaitu:
•
4. f(x4) = (1,75)3 + (1,75)2 - 3(1,75) - 3 = 0,1719
5. Hitungan diulangi dari point 3 dengan sub interval yang semakin rapat.
Seperti metode sebelumnya step 1 sampai 5 disebut iterasi pertama. Hasil perhitungan pada iterasi berikutnya diperlihatkan pada Tabel 8.2.
Tabel 8.2: Hasil hitungan metode regulasi falsi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 65
.4 Metode Iterasi
ah metode perkiraan akar persamaan dengan menggunakan hasil
pers Dengan memberikan
g(xn) …………………………………………… (8.13)
Besarn
Bagan alir metode iterasi diperlihatkan pads Gambar dibawah:
8
Metode iterasi adal
transformasi dari persamaan itu sendiri. Misal sebuah fungsi f(x) = 0 ditransformasikan dengan menambahkan variabel bebas dad fungsi itu sendiri. Misal, variabel x ditambahkan pads fungsi g(x) sehingga diperoleh persamaan barn dengan bentuk umum X = g(x) .......................................................................................... (8.12)
amaan (8.12) menunjukan bahwa nilai x merupakan fungsi dari x .
nilai perkiraan awal yaitu x„ , perkiraan akar selanjutnya yaitu x,,., dapat dihitung dengan rumus iterasi x n+1=
ya kesalahan (error) dihitung dengan formula
……..……………………………..(8.14)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 66
Penentuan akar-akar p akukan dengan prosedur
beri
ntukan fungsi x. = g(x„
enggunakan persamaan (4.14) dengan kdteria:
adalah
• perhitungan diulangi dari langkah ke-2 dengan perkiraan barn,
4. Melakukan identifikasi terhadap fungsi dengan kriteria:
fungsi yang ditinjau disebut
• kin besar pada iterasi berikutnya, maka fungsi yang ditinjau disebut
Contoh
h sebelumnya digunakan fungsi yang sama untuk membandingkan hasil yang
x' – 3x – 3 = 0
Pe
tukan fungsi x. g(x, ), yaitu:
•
Meng fungsi x,,, =9(x,,), yaitu :
3. la kan nakan persamaan (6.14):
ersamaan menggunakan metode iterasi dil
kut: 1. Mene
2. Menghitung fungsi x,,, = 9(x„
3. Melakukan estimasi kesalahan m
• jika c. sangat kecil (e. 0) dengan x„ -- 0, perhitungan selesai dan x,
akar persamaan. jika tidak, maka
yaitu x,* = g * (x,,,,) -
• jika c,, semakin kecil pada iterasi berikutnya, maka
konvergen. jika c, sema
diverges. :
Pada conto
diperoleh pada metode sebelumnya. Dalam contoh ini juga akan digunakan fungsi yang sama, yaitu: Ax) = x 3 +
nyelesaian:
Cara-1
1. Menen
x, X2 +3x+3
• X, =2
2.hitung
• X2 (2)2 +3(2)+3)3 = 1,70998
Meku estimasi kesalahan menggu
11,70998-21 X 100% =16,9607% 70"S
na co sangat besar, maka dilanjutkan pada iterasi berikutnya de
hitungan seperti pada Tabel 6.5.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 67
entifikasi terhadap fungsi f (x) menunjukan bahwa --,, semakin kecil, maka fungsi yang
tukan fungsi x. = g(x, ), yaitu:
Id
ditinjau disebut konvergen. Cara-2
1. Menen
• X+X2 _ 3
3
X, =2
2. ghitung f
X2 - (2)'+(2y-3 - 3 3
ekukan estimasi kesalah
33,3333% na c,, sanga
hitungan seperti pada Tabel 6.6. ntifikasi terhadap fungsi f (x) me
yang ditinjau disebut divergen.
T
c
ang efektif karena dibutuhkan fungsi, nilai awal dan persentase kesalahan yang belum tentu valid. Tetapi metode ini mampu mengidentifikasi suatu fungsi konvergen atau divergen.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 68
SOAL:
. Buat program untuk menghitung akar-akar persamaan berikut, dengan metode
gah interval.
2. Buat program untuk menghitung akar-akar persamaan berikut, dengan metode Regulasi
F
3. program untuk menghitung akar-akar persamaan berikut, dengan metode Iterasi.
1
seten
f W = x, + 2x' — 5x – 5 = 0
alsi
f W = x, + 2x' — 5x – 5 = 0 Buat
f W = x, + 2x' — 5x – 5 = 0
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 69
Fungsi Dalam M-File
Pada dasarnya semua to
dan dikelompokkan dalam folder-folder toolbox. Selain menggunakan fungsi-fungsi yang telah disediakan oleh MATLAB, kita juga dapat membuat fungsi-fungsi sendiri sesuai kebutuhan. Keuntungan
digunakan kembali pada program yang lain. Untuk membangun sebuah fungsi, MATLAB memberikan kita satu pola penulisan untuk diikuti. Yaitu sebagai berikut: Bagian 1 → Function [out1, out2,..] = Nama(un1,in2,..) Bagian 2 → % Penjelasan fungsi
Bagian 3 → ‐‐‐Statement fungsi‐‐‐
‐‐‐Statement fungsi‐‐
da 3 bagian pokok dalam penuli
1. Bagian deklarasi fungsi
2. Bagian penjelasan fungsi
3. Bagian program utama
Dari ketiga bagian tersebut
juga tidak. Variabel out
input dan output yang dapat digunakan untuk fungsi tidak terbatas. Nah, untuk memperjelas cara pembuatannya, mari kita kerjakan lati
1. Pada command Window, ketikkan:
>>edit
Tekan
dibawah berikut: function y=fungsiku% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
% Program latihn 16
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 70
% MATLAB Pogramming
% Oleh : gunay
%
% Fungsi y=x^3+
%
% Cara menggunakan:
% y
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Y=x.^3+12*x.^2‐15*x
Setelah selesai mengetik program diatas, an
dengan nama fungsiku.m. Perhatikan secara default MATLAB akan menyimpannama file anda sama dengan nama fungsinya. Pastikan direktori penyimpanan file anda sudah
direktori MATLAB (lihat bab 2 Penting Untuk Pemula). Untuk menggunakan fungsi yang telah dibuat ketiklah sebagai berikut: >> y=fungsiku(12)
Tekan enter, selan
berikut: >>y=fungsy =
3310
Fun
sebagai berikut: >> help fungsiku ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Program latiha
MATLAB Programming
Oleh: Gunay
Fungsi y=x^3+
Cara menggunakan:
Y=fun
Selesai
argument input dan output tunggal. Nah, untuk lebih memahami program fungsi denganjumlah argument yang lebih dari satu, mari kita kerjakan latihan berikut: 1. Pada Command Window, ketikkan:
>>edit
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 71
2. enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program
isi]=balok(p,1,t)
Tekan
dibawah ini: function [luas,
% Program latihan 17
%MATLAB Programming
% Oleh: Gunay
%
% Menghitung luas
% L
% Isi = plt
% Cara menggunakan :
% [luas,isi]
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Luas= 2*p.*1+2*p.*t+2*1.*t;
Isi = p.*1.*t;
Setelah selesai mengetik pro
dengan nama balok.m. Perhatikan secara detail MATLAB akan menyimpan namfile anda sama dengan nama fungsinya. Buatlah sebuah fungsi lagi dan ketiklah p
Function [luas,isi]=silinder (jari,tinggi)
% Program latihan 17
% MATLAB Programming
% Oleh Gunay
%
% menghitung
% lu
% Isi = pi x r^ 2 x t;
%
% Cara menggunaka
% [luas,isi]=silinder
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Luas= (2*pi*jari*tinggi) + 2*(pi*
Isi= pi*jari^2*tinggi;
Setelah selesai mengetik program diatas, anda simpan di direktori
dengan nama silinder.m. Perhatikan secara default MATLAB akan menyimpan nama file anda sama dengan nama fungsinya. Selesai
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 72
Untuk mengilustrasikan cara menggunakan fungsi yang telah kita buat pada sebuah program yang utuh, kerjakanlah latihan berikut ini.
1. Pada command Window, ketikkan: >>edit
2. Tekan enter, selanjutnya muncul MA
dibawa
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ % Program latihan 18 % MATLAB Program
% Oleh: Gunay
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
clear all;
clc;
disp (‘ ‐‐‐‐
disp
d
disp (‘Pilihan Rumus Perhitun
disp (‘1.Kotak’);
d
disp (‘ ‘);
Pilih=input (‘pilihan
Switch pili
C
disp (‘Hitung Luas dan Isi Kota
disp (‘
pjg
lbr=input(‘lebar kotak=’);
tg=input(‘tinggi kotak=’);
[luas,isi]=balok(pjg,lbr,tg);
disp([‘luas kotak= ‘ num2s
disp([‘volume kotak=’num
Case2
disp (‘Hitung Luas dan Isi Silinder’);
disp (‘ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‘);
tg=input(‘tinggi silinder=’);
[luas,isi]=silinder(r,tg);
disp([‘luas silinder= ‘ num2str
disp([‘volume silinder=’num
otherwise
disp (pilihan anda ngawuur !!!!’)
end;
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 73
3. esai mengetik program diatas, anda simpan di direktori c:/latihanku,
2 Penting Untuk Pemula). Lalu ketiklah nama file
Setelah sel
dengan nama latihan18.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencariandirektori MATLAB (lihat bab
latihan18 tanpa ekstensi: >> latihan18 Tekan enter, selanjutnya p
yang sesuai s
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Program latihan18 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Pilihan Rumus Perhitun
1. Kotak
2. Silinder
pilihan and
hitung luas d
‐‐ ‐
jari‐jari silinder =12
tinggi silinder =12
luas silinder = 1809.5574
volume silinder =542
>>
Selesai
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 74
10.1 Graphic User Interface (GUI)
Bagi anda yang sudah Delphi, istilah
asing lagi. GUI pada dasarnya adal
pengganti perintah teks untuk user berinteraksi. Pada bab-bab sebelumnya, program yang kita buat masih menggunakan perintah teks untuk berinteraksi. 10.1.1 Komponen
Untuk keperluan pem
komponen standar, seperti pushlain untuk kita gunakan. Tetapi
komponen tersebut dengan benar, kita harus memahami konsep Pemrograman Berbasis Objek (PBO) di MATLAB dengan benar. Pada PBO, setiap komponen di artikan sebagai objek yang dapat diberikanpekerjaan maupun melakukan pekerjaan tertentu. Selain itu setiap objek dalam
PBO pasti memiliki 68roperty untuk berinteraksi dengan objek lainnya. Dalam konteks pemrograman MATLAB sendiri, setiap objek tersebut memiliki hirarki objek yang dijabarkan dalam konsep parent-children. Berikut adalah diagramnya :
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 75
Gambar 10.1 Konsep Parent Children
Maksud dari diagram tersebut adalah setiap objek yang digunakan harus diposisikan pada objek parent-nya. Misalnya pushbutton harus diletakkan pada objek figure sebagai parent-nya.Seandainya anda masih bingung, tidak masalah kok. Nanti saat kita mulai menuliskannya dalam skrip pasti anda akan paham.
Objek paling tinggi dalam hirarki MATLAB adalah Screen, tetapi objek ini bertipe abstrak, dan pemrograman MATLAB tidak dapat langsung menyentuhnya. Maka objek tertinggi dalam pemrograman MATLAB kita fokuskan pada objek figure. Sintak umum menggunakan objek dalam pemrograman MATLAB adalah sebagai berikut :
ObjHandle = objek ([Property objek],[Property Value]);
Tentang objek-objek apa saja yang dapat kita gunakan akan dibahas setelah ini. Tetapi khusus untuk properti objek, sengaja tidak panjang lebar kita perbincangkan, karena jumlahnya yang banyak dan kesulitan penulis untuk mendeskripsikan satu persatu. Menurut penulis, lebih baik kita lihat saja hasil dari penggunaan setiap properti objek tersebut. Sehingga anda dapat mendefinisikannya dalam bahasa yang lebih mudah anda mengerti.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 76
Pada umumnya objek yang paling sering digunakan dalam pemrograman MATLAB adalah sebagai berikut :
Obiek Figure
Figure adalah objek tertinggi yang dapat kita gunakan dalam -pemrograman Window. Objek ini dapat diakses dengan beberapa properti penting menggunakan sintak sebagai berikut :
Nama = figure(...
`Color',[R G B],
`MenuBar',< ‘figure'│'None'>,
‘Units’,<’points’│'pixe1'>,
'Position',[Left Top Width Height],
‘Resize’,<’on’│’off’>, ...
'NumberTitle', <'on'│'off'>,
'Name',[Teks Window], ...
`WindowStyle',<'normal'│'modal'>);
Contoh potongan skrip pemakaiannya adalah sebagai berikut :
winl=figure( ...
'units' 'points',...
'position',[100 150 500 300],...
'color',[.8 .8 .9],...
'menubar','none',...
‘resize’,’off, ....
‘numbertitle’,’off’ ....
'name','Latihan Window Programming');
Hasil eksekusi program akan seperti berikut
Objek Uicontrol
Objek Uicontrol adalah objek yang paling kita butuhkan untuk berinteraksi dengan program. Uicontrol berisi komponen-komponen yang kita butuhkan untuk mendisain form untuk media interaksi. Objek ini dapat
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 77
diakses dengan beberapa properti penting menggunakan sintak sebagai berikut :
Nama = uicontrol( ...
'Parent',[NamaFigure],
'Style',[Komponen], ...
'Units',<’points’│’pixel’>,
'ListboxTop',0, ...
'Position',[Left Top Width Height],
'String’,[Text pada Object],...
‘Callback',[MATLAB Skrip]);
Dimulai dari sini, untuk seterusnya pada setiap penulisan objek yang barn kita harus mendefinisikan objek parent dari objek tersebut. Berikut adalah cuplikan skrip yang menggunakan uicontrol.
edit1=uicontro1(IparentI,win1 ....
‘units’,’points' ....
'position',[110 140 100 15],...
‘backgroundcolor’,[l 1 1],...
‘style’,'Pushbutton' ....
'string','Exit',...
'fontname','arial',...
'fontsize',10,...
`Callback','Close');
perhatikan properti 'Parent' yang diarahkan pada objek bernama ‘winl’ (penulisan nama objek tanpa tanda petik). Artinya objek anda yang bernama 'edit1' diletakkan pada objek 'winl'.
Lalu perhatikan pula properti 'Style', nilai yang dituliskan pada properti ini adalah nama-nama komponen yang disediakan didalam objek uicontrol. Berikut ini adalah tabel nama-nama komponen yang dapat kita gunakan, berikut skripnya:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 78
Tabel 10.1 Tabel Unicontrol
Obiek Uimenu
Objek uimenu pada dasarnya mirip dengan uicontrol khususnya pada komponen pushbutton. Kalau anda melihat pada aplikasi-aplikasi Window, dipojok kiri atas selalu ada daftar menu yang dapat digunakan dengan cara meng-klik pada menu yang disorot. Nah uimenu digunakan untuk membuat daftar menu seperti itu. Berikut ini adalah sintak umumnya dalam pemrograman MATLAB:
nama=uimenu('parent',[NamaFigure],...
'Label',[Teks Menu],...
`Callback',[MATLAB Skrip]);
Berikut ini adalah contoh potongan skrip yang digunakan dalam
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 79
pemrogramannya :
menu1=uimenu(‘parent’,win1 ....
'Label','Program');
menull=uimenu('parent',menul,...
'Label,'Kalkulator’,…
'Callback','latihan23');
Dan hasil saat dieksekusi adalah daftar menu seperti berikut :
Obiek Axes
Objek axes dalam pemrograman MATLAB sangat penting untuk melakukan visualisasi data. Tanpa menggunakan objek axes, kita tidak dapat menampilkan hasil eksekusi fungsi plot, mesh, contour dan lain-lain, karena objek axes adalah medianya. Sintak umum menggunakan objek axes adalah sebagai berikut :
nama=axes('parent',[objek parent],...
‘units’,<’points’│’pixel'>,...
'position',[Left Top Width Height],...
‘xgrid’,<’on’│’off'> ....
‘ygrid', <’on'│’off’> ....
'xcolor',[R G B],...
'ycolor', [R G B],...
'fontsize',[numerik],...
'color', [R G B]);
Berikut adalah potongan program yang menggunakan skrip axes :
grafikl=axes('parent',winl,...
'units’,’points’,..
'position',[250 80 240 180],...
'xgrid','on',...
'ygrid','on',...
'xcolor',[0.4 0 .15],...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 80
'ycolor',[0.4 0 .15],...
'fontsize',8,...
'color',[1 1 1]);
Properti Callback Sebagai Media Interaksi
Agar objek-objek yang kita buat dapat digunakan untuk mengerjakan perintah-perintah pemrograman sebagaimana mestinya, ada media yang disediakan disetiap objek untuk itu. Medianya adalah melalui properti callback. Dimana nilai properti callback akan dieksekusi sebagai program Matlab ketika objek pemiliknya dikenai sesuatu (pada pushbutton misalnya diklik). Pada properti callback ini kita buatkan skrip MATLAB sebagaimana biasa (skrip MATLAB) atau kita tuliskan nama file MATLAB yang akan dijalankan. Mengetahui fungsi callback adalah kunci pertama pemrograman Window menggunakan MATLAB.
Berikut adalah cuplikan contoh skrip untuk callback :
editl=uicontrol('parent',winl,...
'units' 'points',...
'position',[110 140 100 15],...
'backgroundcolor',[1 1 1],...
'style','Pushbutton',... ‘string’,'Exit',...
'fontname','arial',...
‘fontsize',10 ....
‘Callback', ['x [0:10:180];',...
'y sin(x*pi/180);',...
'p1ot(x,y,''-r'')'l);
Bentuk lainnya, adalah sebagai berikut :
Menu14=uimenu('parent',menul,...
'Labe1','Tes',...
'Callback','latihan20');
Pada contoh terakhir, 'latihan20' adalah nama file MATLAB, perhatikan cara penulisannya tidak boleh dengan ekstensinya (latihan20.m).
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 81
Interaksi Antar Obiek Visual (Fungsi Get dan Set)
Mengambil nilai properti dari satu objek dan menggunakannya untuk mengisi nilai properti pada objek lain, itulah hakekat pemrograman Window.
Mengetahui metoda Interaksi antar objek visual dalam pemrograman MATLAB adalah kunci kedua untuk pemrograman Window. MATLAB menyediakan dua buah fungsi untuk itu, yaitu get dan set. Bayangkan, kita memiliki 3 buah objek edit sebagai berikut :
Kita memberikan input angka pada editl dan edit2, kemudian angka tersebut dijumlahkan dan hasilnya dimunculkan ke edit3.
Fungsi get kita gunakan untuk mengambil nilai properti dari suatu objek. Fungsi ini dapat dipadukan dengan fungsi konversi string ke numeric atau sebaliknya, sesuai kebutuhan pengolahan datanya. Sintak dasarnya adalah sebagai berikut :
X=get([NamaObjek],[Property]);
Maka skrip untuk mengambil input dari editl dan edit2 adalah
a=str2num(get(editl,'String')); b=str2num(get(edit2,'String'));
c=a+b;
Sedangkan fungsi set kita gunakan untuk memberikan suatu nilai pada properti objek tertentu. Fungsi ini juga dapat dipadukan dengan fungsi konversi sebagai mana fungsi get. Sintak dasarnya adalah sebagai berikut :
set([NamaObjek],[Property],[Nilai Baru]);
Maka skrip untuk menampilkan output pengolahan kita ke edit3 adalah sebagai berikut :
set(edit3,'String',num2str(c));
Sekarang kita sudah mendapatkan cara penulisan dan konsep-konsep untuk membangun aplikasi Window dengan menggunakan MATLAB. Tiba
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 82
saatnya kita lanjutkan untuk menggunakan skrip-skrip tersebut dalam satu program yang utuh.
Tutorial #1 : Program Kalkulator Sederhana
Program latihan pertama kita adalah membuat Program Kalkulator Sederhana. Untuk membuat program ini, kita rencanakan beberapa tahap.
Gambar 10.2 Contoh pembuatan layout form
Dua : Membuat Program MATLAB dalam 5 bush file terpisah seperti pada
diagram
Kita mulai dengan membuat file pertama (Graphic User Interface). ikuti langkah-langkah berikut ini.
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
% -------------------------------------
% Program Latihan 23
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 83
% MATLAB Window Programming
% Oleh : gunay
clear all;
cic;
winl=figure( ...
'units' 'points' ...
'position',[130 190 400 200],...
'color',[.8 .8 .91 ....
'menubar','none',...
‘resize','off' ....
'numbertitle','off',...
'name','Latihan 23 : Window Programming');
framel=uicontrol('parent',winl,...
‘units','points',...
'position',[0 0 500 60],...
'backgroundcolor',[.3 .3 .4],...
'style','Frame');
labell=uicontrol(1parent',win1 ....
‘units’,’points’,...
'position',[30 170 300 20] ....
'backgroundcolor',[.8 .8 .9],...
‘style' ,'Text’,...
‘string','Kalkulator Sederhana' ....
'fontname','arial',...
'fontsize',12,...
'fontweight','bold',...
'foregroundcolor',[0 0 0]);
label2=uicontrol('parentl,winl,...
‘units','points',...
'position',[30 140 100 15],...
'style','Text'....
'string','Data ke 1',...
'fontname','arial',...
'fontsize',10);
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 84
label3=uicontrol('parenL',winl ....
‘units',’points' ....
'position',[30 120 100 15],...
'style','Text',...
'string','Data ke 2',...
'fontname','arial',...
‘fontsize',10);
label4=uicontrol('parent',winl ....
'units' 'points' ....
'position',[30 90 100 15],...
'style','Text',...
'string','hasil Proses',...
'fontname','arial',...
'fontsize',10);
editl=uicontrol(‘parent',winl....
‘units’,'points',...
'position',[130 140 60 15],...
‘backgroundcolor',[l 1 1],...
'style','Edit',...
'string','0',...
'fontname','arial',...
'fontsize',10);
edit2=uicontrol('parent',winl,...
‘units’,’points’,...
'position',[130 120 60 15],...
'backgroundcolor',[l 1 1],...
'style','Edit',...
‘string’,’0’,...
'fontname','arial',...
'fontsize',10);
edit3=uicontrol('parent',winl,...
'units','points',...
'position',[130 90 60 15],...
'backgroundcolor’,[l 1 1],...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 85
'style' 'Edit',...
‘string',’0’ ....
'fontname','arial',...
'fontsize',10);
tomtambah=uicontrol('parent',winl...
‘units’,'points' ....
'position',[30 40 80 15],...
'style','pushbutton',...
`callback','latihan23a',...
'string','Tambah',...
‘fontname’,’arial’,...
'fontsize',10);
tomkurang=uicontrol(lparentl,winl...
'units' 'points',...
'position',[110 40 80 15],...
'style' 'pushbutton' ....
‘callback',’latihan23b’ ....
‘string’,'Kurang' ....
'fontname’,’arial’,...
'fontsize',10);
tomkali=uicontrol(‘parent',winl ....
'units' 'points' ....
'position',[190 40 80 15],...
'style','pushbutton' ....
‘callback','latihan23c',...
'string','Kali',...
‘fontname’,’arial',...
'fontsize',10);
tombagi=uicontrol(‘parent’,winl ....
'units','points',...
'position',[270 40 80 15],...
‘style’,’pushbutton' ....
‘callback’,'latihan23d',...
‘string’,'Bagi’,...
'fontname','arial',...
'fontsize',10);
tomtutup=uicontrol('parent’,winl,...
'units','points',...
'positionl,[270 20 80 15],...
'style','pushbutton',...
'string','Tutup',...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 86
'fontname','arial',...
'fontsize',10....
'callback','close');
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan23.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencarian direktori MATLAB (lihat Bab 2 Penting Untuk Pemula). Lalu ketiklah nama file latihan23 tanpa ekstensi :
»latihan23
5. Tekan Enter, selanjutnya program akan dijalankan dan menghasilkan Window seperti berikut ini :
6. Selesailah program pertama.
Nah, untuk program-program selanjutnya adalah program yang yang berisi skrip interaksi antar objek yang telah kita definisikan pada file latihan23.m. Perhatikan nama-nama objeknya.
Sekarang kita lanjutkan dengan membuat file program-program proses. Ikuti langkah-langkah berikut :
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
% ------------------------
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 87
% Program Tambah Untuk Latihan 23
% ------------------------
a=str2num(get(editl,'String'));
b=str2num(get(edit2,'String'));
c=a+b;
set(edit3,'String',num2str(c));
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan23a.m.
4. Ganti tanda '+'pada baris c=a+b menjadi
c=a-b;
5. Pilih menu Save As pada editor MATLAB, anda simpan di direktori c:/Iatihanku, dengan nama latihan23b.m.
6. Ganti lagi tanda'-' pada baris c=a-b menjadi
c=a*b;
7. Pilih menu Save As pada editor MATLAB, anda simpan di direktori c:/Iatihanku, dengan nama latihan23c.m.
8. Ganti tanda '*'pada baris c=a*b menjadi
c=a/b;
9. Pilih menu Save As pada editor MATLAB, anda simpan di direktori c:/Iatihanku, dengan nama latihan23d.m.
10. Pastikan direktori penyimpanan file anda sudah terdapat Jcaem daftar pencarian direktori MATLAB (Iihat Bab 2 Penting Pemula).
11. Selesailah pembuatan 4 program untuk proses.
Tiga : Jalankan Program Utama (latihan23.m). Selesai.
Tutorial #2 : Program Valuta Asing -> Rupiah
Program latihan kedua kita adalah membuat Program Valuta Asing -> Rupiah. Untuk membuat program ini, kita rencanakan beberapa tahap.
Satu : Membuat Layout Form dan Interaksi Program
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 88
Interaksi dengan callback diletakkan pada pushbutton1 dan pushbutton2.
Dua: Membuat Program MATLAB dalam 2 buah file terpisah seperti pada
diagram
Dari pengalaman tutorial sebelumnya, mungkin anda bisa langsung mencoba sendiri. Tapi kalau belum terbiasa, mari kita ikuti langkah-langkahnya. Berikut adalah langkah-langkah membuat file pertama (User Interface).
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
% ---------------------------
% Program Latihan 24
% MATLAB Window Programming
% Oleh : gunay
% ---------------------------
clear all;
clc;
winl=figure( ...
‘units’,’points' ....
'position',[130 190 400 200],...
'color',[.8 .8 .9],...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 89
'menubar','none',...
'resize','off',...
'numbertitle','off',...
'name','Latihan 24 : Window Programming');
frame1=uicontrol('parent',winl ....
‘units’,’points' ....
'Position',[O 0 500 60],...
'backgroundcolor',[.3 .3 .4],...
'style','Frame');
labell=uicontrol('Parent',win1 ....
'units','points',...
'position',[30 170 300 20],...
'backgroundcolor',[.8 .8 .9],...
'style','Text',...
'string','Valuta Asing -- > Rupiah',...
‘fontname','arial',...
'fontsize',12,...
'fontweight','bold',...
'foregroundcolor',[0 0 0]);
label2=uicontrol('parent’,win1 ....
'units' 'points',...
'position',[220 140 100 15],...
'style','Text',...
'string','Mata Uang Asing',...
‘fontname’,’arial’ ....
'fontsize',10);
popupl=uicontrol('parentl,winl ....
'units','points' ....
'position',[220 130 100 10],...
'backgroundcolor',[l 1 1],...
'style','popupmenu',...
'string','US. Dollar│MLY. Ringgit│SGP
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 90
Dollar│JPN. Yen',...
'fontname','arial',...
'fontsize',10);
label2=uicontrol('parent',winl,...
'units','points',...
'position',[30 140 100 15],...
'style','Text',...
'string','Jumlah Uang',...
'fontname','arial',...
'fontsize',10);
label3=uicontrol('parent',winl ....
‘units','points',...
'position',[30 120 100 15],...
'style','Text',...
'string','Kurs',...
'fontname','arial',...
'fontsize',10);
label4=uicontrol('parent’,win1,...
'units','points',...
'position',[30 90 100 15],...
'style','Text',...
'string','Jumlah Rupiah',...
'fontname','arial',...
'fontsize',10);
editl=uicontrol('parent’,winl ...
'units','points',...
'position',[130 140 60 15],...
‘backgroundcolor’,[l 1 1],...
‘style’,'Edit' ....
'string','0',...
'fontname','arial',...
'fontsize',10);
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 91
edit2=uicontrol('parent',winl,...
'units','points',...
'position',[130 120 60 15],..
'backgroundcolor’,[1 1 1],...
'style','Edit',...
'string','0',...
'fontname','arial',...
'fontsize',10);
edit3=uicontrol('parent’,winl,...
'units',’points',...
'position',[130 90 60 15],...
'backgroundcolor',[1 1 1],...
'style','Edit' ....
'string','0',...
'fontname','arial',...
'fontsize',10);
tomhitung=uicontrol(lparent',winl ....
'units','points' ....
'position',[270 40 80 15),...
'style',’pushbutton' ....
'callback','latihan24a',...
'string','Hitung',...
'fontname','arial',...
'fontsize',10);
tomtutup=uicontrol(‘parent',winl,...
‘units’,’points',...
'position',[270 20 80 15],...
'style’,’pushbutton’ ....
‘string’,'Tutup',..
'fontname','arial',...
'fontsize',10,...
‘callback’,’close’);
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan24.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencarian direktori MATLAB (lihat Bab 2 Penting Untuk Pemula). Lalu ketiklah nama file
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 92
latihan24 tanpa ekstensi:
>>latihan24
5. Tekan Enter, selanjutnya program akan dijalankan dan menghasilkan sebagai berikut
6. Selesai pembuatan program pertama.
Kita lanjutkan dengan membuat program kedua dengan memperhatikan nama objek yang telah kita definisikan, mengikuti langkah-langkah berikut :
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
%-------------------------------------------------
% Program Hitung Valuta Untuk Latihan 24
% ---------------------------------------
uangl=str2num(get(editl,'String'));
pilihan = get(popupl,'Value');
switch pilihan
case 1
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 93
% US dollar
kurs=9900;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
case 2
% Mly Ringgit
kurs=1450;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
case 3
% Sgp Dollar
kurs=4600;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
case 4
% Jpn Yen
kurs=3500;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
end;
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan24a.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencarian direktori MATLAB (Iihat Bab 2 Penting Untuk Pemula).
5. Selesailah pembuatan program kedua.
Tiga : Jalankan Program Utama (latihan24.m). Selesai.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 94
11.1 Pengertian Simulink
Simulink merupakan domain simulasi dan basik disain untuk simulasi system dinamik. Simulink banyak digunakan untuk interactif graphical environment dan customizable simulasi, implement, test control, signal processing, communikasi, dan other timevarying systems.
Simulink bekerja secara pemodelan dengan menggunakan beberapa simbul-simbul yang telah disediakan pada library propram.
11.2 Ruang kerja simulik
Ruang kerja simulink terlepas dari ruang kerja matlab/command-windows matlab. Simulink memiliki ruang kerja tersendiri yang disebut dengan “Model”.
Simulink dapat dimulai melalui icon:
Gambar 11.1 Icon Simulink
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 95
11.3 Simulink Library Browsser
Setelah menekan icon simulink maka akan muncul jedela library browser yang merupakan tempat dari bagian simbul-simbul pemrograman.
Gambar 11.2 Lybrary Browser
Model dapat dibuka melalui file – new – model seperti berikut:
Gambar 11.3 Membuka Model
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 96
Model merupakan command/ruang kerja dari simulink, yakni dengan men drag/menknarik simbul-simbul pada simulink library yang diperlukan ke dalam command model. Akan tetapi disini sangat diperlukann kemahiran dalam memodelkan persamaan matematis sebelum menyusun dalam bentuk model simulasi dengan simulink. Adapun command model sebagai berikut:
Gambar 11.4 Comand Model
11.4 Tool Simulink Library Browser
Pada library browser terdapat banyak tool yang memiliki fungsi dan kegunaan yang berbeda-beda. Seperi: Math Operations, Sinks, Sources, Continous dan lain sebagainya. Untuk lebih jelasnya dapat dilihat pada demos- matlab-simulink.
Gambar 11.5 Contoh tool sources.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 97
Diatas merupakan contoh beberapa isi dari tool sources. Dimana yang paling sering digunakan adalah simbul “constant”.
Simbul ini digunakan sebagai tempat menginput nilai-nilai daripada constanta-constanta matematis.
Gambar 11.6 Contoh tool math operation
Math operations merupakan tool operasi maitematika, baik itu simbul perkalian, penjumlahan, pengurangan, pembagian, akar dan lain sebagainya.
Product merupakan simbul matematis untuk perkalian.
Sum merupakan untuk matematis untuk penjumlahan dan pengurangan.
Masih banyak simbul-simbul yang lain dalam library bworser, silakan anda pelajari lebih lanjut. Parameter-parameter dalam simbul-simbul tersebut dapat diubah dengan meng-klik kanan kemudian akan keluar command parameter. Dari command tersebut anda dapat merubah parameter-parameter sesuai yang diperlukan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 98
Contoh:
Suatu tekanan pada dasar tangki ditentukan dengan rumusan matematis seperti:
Dimana:
P1 = tekanan pengukuran
= 721 lb/ft2 = Berat jenis air
= 62,4 lb/ft3
h = tinggi air
= 3 ft
Maka persamaan matematis tersebut dapat diselesaikan dengan simulink, sebagai berikut:
Buka simulink kemudian library browser dan command model.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 99
Stelah itu ambillah 3 simbul constant dari sources dan ditarik ke command model dan beri nama masing-masing constans seperti dibawah:
Setelah itu kita memerlukan sun dan product untuk penjumlahan dan perkalian konstanta (ambil di tool math operation), ambil pula simbul display untuk memunculkan nilai P2 (ambil pada tool sink):
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 100
Ganti parameter constant sesui dengan soal:
Misalnya:
El
Setelah muncul source blok parameter diatas, ganti nilai parameternya sesuai nama constant yang ada lalu tekan ok. Maka nilai constant akan bernilai sesui dengan soal.
Setelah itu hubungkan sesui dengan persamaan matematisnya:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 101
Untuk memperoleh nilai dari P2 maka perlu menekan tool run seperti yang dilingkari diatas. Maka akan muncul nilai P2 seperti dibawah:
Soal:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 102
Sebuah tangki tertutup berisi udara bertekanan dan minyak (SGminyak = 0,9) seperti pada gambar: Sebuah barometer tabung U yang menggunakan air raksa (SGraksa=13,6) dihubungkan ke tangki tersebut seperti pada gambar:
Tentukan bacaan tekanan dari alat ukur!!!! (Selesaikan dengan simulink)
Dimana
P1 = Pudara + Berat Jenis minyak + (h1+h2)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 1
Logika dan pemrograman computer merupakan salah satu mata kuliah dasar di Program Studi Teknik Mesin dengan bahasa pemrograman Matlab. Mata kuliah ini disajikan pada semester III yang meliputi pembahasan mengenai algoritma, logika dan bahasa pemrograman, matematika sederhana, operasi array, fungsi M-file, system GUI, Graphic, Simulink dan control sistem. Logika dan pemrograman komputer sangat ditunjang oleh mata kuliah tertentu khususnya kalkulus karena dalam pemrograman komputer sangat diperlukan pemahaman di bidang matematika sederhana dan matematika model. Logika dan pemrograman komputer merupakan penunjang yang sangat mendasar bagi mata kuliah teknik control.
Bahasa pemrograman sebagai media untuk berinteraksi antara manusia dengan computer dewasa ini dibuat agar semakin mudah dan cepat. Banyak bahasa pemrograman yang bisa digunakan dalam pemecahan masalah keteknikan, seperti C++, Pascal, Delphi, Visual basic, Java dan yang lainnya. Semua itu mampu membantu kita dalam berinteraksi dengan computer dan masalah keteknikan. Dalam perkuliahan Logika dan Pemrograman Komputer khususnya di Teknik Mesin Universitas Udayana bahasa pemrograman yang dipakai adalah bahasa Matlab.
Matlab dikembangkan sebagai bahasa pemrogrman sekaligus alat visualisasi yang menawarkan banyak kemampuan untuk menyelesaikan berbagai kasus yang berhubungan langsung dengan matematika, rekayasa teknik, fisika, statistika, komputasi dan modeling. Matlab dibangun dari bahasa induknya yaitu bahasa C, namun tidak dapat dikatakan sebagai varian dari C, karena dalam sintak maupun cara kerjanya sama sekali berbeda dengan C. Namun dengan hubungan langsungnya terhadap C, Matlab memiliki kelebihan-kelebihan bahasa C bahkan mampu berjalan pada semua platform Sistem Operasi tanpa mengalami perubahan sintak sama sekali.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 2
Matlab merupakan singkatan dari Matric Laboratory, yakni merupakan bahasa pemrograman haig perpomace, bahasa pemrograman level tinggi yang khususnya untuk komputasi teknis. Bahasa ini mengintegrasikan kemampuan komputasi, visualisasi dan pemrograman dalam sebuah lingkungan yang tunggal dan mudah digunakan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 3
2.1 Konsep Algoritma
Algoritma merupakan pondasi yang harus dikuasai oleh setiap mahasiswa yang ingin menyelesaikan suatu masalah secara berstruktur, efektif, dan efisien, teristimewa lagi bagi mahasiswa yang ingin menyusun program komputer untuk menyelesaikan suatu persoalan. Konsep dan dasar-dasar penyusunan algoritma akan dibahas dalam bab ini.
Definisi
Algoritma:
1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas, tetapi tersusun secara logis dan sistematis.
2. Suatu prosedur yang jelas untuk menyelesaikan suatu persoalan dengan menggunakan langkah-langkah tertentu dan terbatas jumlahnya.
3. Algoritma adalah sekelompok aturan untuk menyelesaikan perhitungan yang dilakukan oleh tangan atau mesin.
4. Algoritma adalah langkah demi langkah sebuh prosedur berhingga yang dibutuhkan untuk menghasilkan sebuh penyelesaian
5. Algoritma adalah langkah –langkah perhitungan yang mentransformasikan dari nilai masukan menjadi keluaran
6. Algoritma adalah urutan operasi yang dilakukan terhadap data yang terorganisir dalam struktur data
7. Algoritma adalah sebuah program abstrak yang dapat dieksekusi secara fisik oleh mesin
8. Algoritma adalah sebuah model perhitungan yang dilakukan oleh computer
Catatan Sejarah
Abu Ja'far Muhammad Ibnu Musa Al-Kwarizmi, penulis buku "Aljabar wal muclabala" beberapa abad yang lalu (pada abad IX), dianggap sebagai pencetus pertama Algoritma karena di dalam buku tersebut Abu Ja'far menjelaskan langkah-langkah
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 4
dalam menyelesaikan berbagai persoalan aritmetika (aljabar), Kemungkinan besar kata "Algoritma" diambil dari kata "Al-Kwarizmi" yang kemudian berubah menjadi "Algorism", selanjutnya menjadi "Algorithm".
Ciri Algoritma
Donald E. Knuth, seorang penulis beberapa buku algoritma abad XX, menyatakan bahwa ada beberapa ciri algoritma, yaitu:
• Algoritma mempunyai awal dan akhir. Suatu algoritma harus berhenti setelah mengerjakan serangkaian tugas atau dengan kata lain suatu algoritma memiliki langkah yang terbatas.
• Setiap langkah harus didefinisikan dengan tepat sehingga tidak memiliki arti ganda (not ambiguous).
• Memiliki masukan (input) atau kondisi awal.
• Memiliki keluaran (output) atau kondisi akhir.
• Algoritma harus efektif; bila diikuti benar-benar akan menyelesaikan persoalan.
Algoritma bisa ditemukan dalam kehidupan sehari-hari, misalnya sebagai berikut:
Tabel 2.1 Contoh Algoritma dalam kehidupan sehari-hari
Proses
Algoritma
Contoh langkah
1. Membuat Kue
Resep Kue
Campurkan 2 butir telur ke dalam adonan, kemudian kocok hingga mengembung.
2. Membuat Pakaian
Pola pakaian
Gunting kain dad pinggir kid bawah ke arah
kanan atas sepanjang 15 cm.
3. Praktikum Kimia
Petunjuk Praktikum
Campurkan 10 ml Asam Sulfat ke dalam 15 ml
Natrium hidroksida.
Sifat Algoritma
Berdasarkan ciri algoritma yang dipaparkan oleh Donald Knuth dan definisi Algoritma maka dapat disimpulkan sifat utama suatu algoritma, yaitu sebagai berikut:
• input: Suatu algoritma memiliki input atau kondisi awal sebelum algoritma dilaksanakan dan bisa berupa nilai-nilai pengubah yang diambil dari himpunan khusus.
• output: Suatu algoritma akan menghasilkan output setelah dilaksanakan, atau algoritma akan mengubah kondisi awal menjadi kondisi akhir, di mana nilai output diperoleh dari nilai input yang telah diproses melalui algoritma.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 5
• definiteness: Langkah-langkah yang dituliskan dalam algoritma terdefinisi dengan jelas sehingga mudah dilaksanakan oleh pengguna algoritma.
• finiteness: Suatu algoritma harus memberi kondisi akhir atau output setelah melakukan sejumlah langkah yang terbatas jumlahnya untuk setiap kondisi awal atau input yang diberikan.
• effectiveness: Setiap langkah dalam algoritma bisa dilaksanakan dalam suatu selang waktu tertentu sehingga pada akhimya memberi solusi sesuai yang diharapkan.
• generality: Langkah-langkah algoritma berlaku untuk setiap himpunan input yang sesuai dengan persoalan yang akan diberikan, tidak hanya untuk himpunan tertentu.
Agar bentuk algoritma dan proses penyusunannya dapat mulai dipahami maka berikut ini akan diuraikan proses pembuatan algoritma mulai bentuk yang menggunakan bahasa sehari-hari, disusul penjelasan format algoritma yang dapat dijadikan acuan, dan beberapa contoh pembuatan algoritma yang mengikuti format tersebut.
Contoh: Susun algoritma untuk mencari angka terbesar (maksimum) dari suatu kumpulan
bilangan bulat yang terbatas jumlahnya.
Solusi:
1. Anggaplah angka pertama dalam kumpulan tersebut adalah yang terbesar (maksimum).
2. Bandingkan angka maksimum ini dengan angka berikutnya dalam kumpulan. Bila angka berikut tersebut lebih besar maka jadikanlah maksimum.
3. Ulangi langkah 2 ini sehingga tidak ada lagi angka yang tersisa dalam himpunan.
4. Hentikan pembandingan setelah semua angka selesai dibandingkan sehingga angka terbesar dalam himpunan tersebut adalah angka maksimum terakhir.
Solusi tersebut dalam bentuk simbol instruksi adalah sebagai berikut:
• andaikan N = banyaknya angka dalam himpunan
• index = 1
• maksimum = angka(index)
• selama index < N , lakukan:
o index = index + 1
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 6
o bila angka(index) > maksimum maka maksimum = angka (index)
o ulangi lagi untuk index berikutnya
• angka terbesar dalam himpunan adalah maksimum terakhir.
Suatu algoritma tentu dapat ditulis dengan menggunakan bahasa sehari-hari seperti contoh di atas. Namun, algoritma seperti ini masih sulit untuk langsung diterjemahkan apabila akan diimplementasi ke dalam suatu bahasa pemrograman komputer. Setiap algoritma tentu saja memerlukan suatu langkah "peralihan" ke suatu bahasa program ketika akan dilaksanakan dengan menggunakan komputer sehingga semakin dekat bentuk algoritma ini ke bentuk program komputer maka semakin mudah diterjemahkan. Suatu algoritma juga dapat ditulis langsung dalam bentuk "bahasa program", tetapi algoritma seperti ini hanya bisa digunakan untuk bahasa program tertentu dan terpaksa diubah kembali untuk disesuaikan apabila akan diimplementasi dengan bahasa program yang lain. Suatu struktur tertentu akan diperkenalkan dalam buku ini agar algoritma dapat diterima secara umum dan cukup efisien apabila akan diterjemahkan ke dalam bahasa program.
Struktur Algoritma
Agar algoritma dapat ditulis lebih teratur maka sebaiknya dibagi ke dalam beberapa bagian. Salah satu struktur yang sering dijadikan patokan adalah berikut:
• Bagian Kepala (Header): memuat nama algoritma serta informasi atau keterangan tentang algoritma yang ditulis.
• Bagian Deklarasi/Definisi Variabel: memuat definisi tentang nama variabel, nama tetapan, nama prosedur, nama fungsi, tipe data yang akan digunakan dalam algoritma.
o Bagian Deskripsi/Rincian Langkah: memuat langkah-langkah penyelesaian masalah, termasuk beberapa perintah seperti baca data, tampilkan, ulangi, yang mengubah data input menjadi output, dan sebagainya.
Contoh 1: Berikut ini adalah contoh struktur sebuah algoritma:
Algoritma Luas - lingkaran
{ menghitung luas sebuah lingkaran apabila jari-jari lingkaran tersebut diberikan }
Deklarasi
I Definisi nama tetapan }
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 7
const N = 10;
const phi = 3.14;
definisi nama peubah/variabel }
real jari_jari, luas;
Deskripsi
read(jari-jari);
luas =phi* jari_jari* jari_jari;
write(luas);
Contoh 2: Contoh berikut ini adalah algoritma untuk menghitung nilai rata sejumlah angka yang dimasukkan lewat keyboard.
Algoritma Nilai_Rata
( menghitung nilai rata sejumlah bilangan yang dimasukkan lewat keyboard }
Definisi Variabel
integer x, N, k, jumlah;
real nilai_rata;
Rincian Langkah
{ masukkan jumlah data }
read(N);
k ←1;
jumlah ← 0;
while (k <= N) do
( baca data )
read(x);
jumlah ← jumlah + x;
k ← k + 1;
endwhile
( hitung nilai rata )
nilai_rata ← jumlah / N;
write(nilai_rata);
Contoh 3: Contoh algoritma yang menerima dua buah angka bulat kemudian menampilkan angka yang lebih besar.
Algoritma Lebih_besar
( menerima dua angka kemudian menampilkan angka yang lebih besar }
Definisi Variabel
integer angka 1, angka 2;
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 8
Rincian Langkah
( memasukkan angka }
write ("Masukkan angka 1:”); read (angka1);
write ("Masukkan angka 2:”); read (angka2);
( periksa yang lebih besar }
if (angka1 > angka2)
then write("yang lebih besar=”,angka1);
else write("yang lebih besar=”, angka2);
endif.
Contoh 4: Algoritma berikut ini mencari angka terbesar dari suatu himpunan angka.
Algoritma Terbesar
( membentuk himpunan angka, kemudian mencari angka terbesar }
Definisi Variabel
integer N=25, max, indeks;
integer Angka[N];
Rincian Langkah
( memasukkan anggota himpunan angka }
for( i = 1 to N step 1)
write("Masukkan angka ke:",i);
read( Angka[ i ] );
endfor.
{max adalah angka pertama}
max ← Angka[ 1 ];
indeks ←1;
( bandingkan max dengan setiap angka dalam himpunan }
while ( indeks < N) do
indeks ← indeks + 1;
if ( Angka[indeks] > max )
then max ← Angka[indeks];
enddo.
write ( "Angka terbesar=”,max );
2.2 Flowcharting
Flowchart adalah suatu teknik untuk menyusun rencana program telah diperkenalkan dan telah dipergunakan oleh kalangan programer komputer sebelum algoritma menjadi populer, yaitu flowcharting. Flowchart adalah untaian simbol gambar (chart) yang
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 9
menunjukkan aliran (flow) dari proses terhadap data. Simbol-simbol flowchart dapat diklasifikasikan menjadi simbol untuk program dan simbol untuk sistem (peralatan hardware).
Gambar 2.1 Simbul program flowchart dan system flowchart
Contoh : Gambarkan Flowchart dari proses pemilihan satu bilangan yang lebih besar di antara dua buah bilangan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 10
Contoh : Proses memilih satu bilangan terbesar dari tiga bilangan.
Contoh : Jalan raga trans Sulawesi sepanjang 2000 Km akan segera ditingkatkan. Pada setiap jarak 65 Km akan dibangun fasilitas berupa pompa bensin, kafe, tempat istirahat, dan tempat ibadah. Tampilkan lokasi pada jarak kilometer berapa fasilitas tersebut akan dibangun.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 11
2.3 Analisa Algoritma
Untuk suatu fungsi polynomial f(n) dengan n data masukan, terdapat tiga keadaan yang bisa muncul selama waktu tenpuh algoritma dan disebut kompleksitas waktu yaitu Worst Case, Average Case dan Best Case. Penjelasan masing-masing kompleksitas sebagai berikut:
1. Worst Case merupakan waktu tempuh yang bernilai maksimum dari suatu fungsi f(n) untuk setiap input yang mungkin. Keadaan ini disebut sebagai keadaan terburuk (keadaan terjelek) dari sebuah algoritma.
2. Average Case merupakan suatu keadaan dari waktu tempuh yang ekivalen dengan nilai ekspetasi dari fungsi f(n) untuk setiap input data yang mungkin. Fungsi f(n)=e dan didefenisikan e = n1p1 + n2p2 + … + nkpk dengan n1,n2 . . . nk merupakan nilai-nilai yang muncul, sedangkan p1,p2,…,pk merupakan probabilitas dari setiap nilai (n1) yang muncul.
3. Best Case merupakan waktu tempuh yang bernilai minimum dari suatu fungsi f(n) untuk setiap input yang mungkin. Keadaan ini disebut sebagai keadaan terbaik dari suatu proses sebuah algoritma menyelesaikan permasalahan.
Kompleksitas sebuah algoritma adalah fungsi g(n) yang berada diatas batas bilangan operasi (running time) yang dibentuk oleh algoritma ketika diberikan input berukuran n. Relatif sulit membuat statistic perilaku masukan, sehingga paling sering diberikan perilaku keadaan jelek (worst case). Waktu maksimum dari kompleksitas g(n) didekati dengan O(f(n)) dimana f(n) adalah salah satu dari fungsi berikut ini:
f(n)=n (kompleksitas linier), f(n)=log n (kompleksitas logaritmatik), f(n)=na dimana a ≥ 2 (kompleksitas polynomial), f(n)=an (kompleksitas eksponensial).
2.3 Himpunan
Dalam matematika himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun ini merupakan ide sederhana, himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern. Definisi lain dari himpunan adalah sekelompok obyek yang direpresentasikan dalam satu satuan (unit). Setiap objek dari himpunan disebut elemen atau anggota dan umumnya setiap elemen dalam himpunan mempunyai beberapa kesamaan sifat atau karakteristik. Unit
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 12
yang melingkupi beberapa anggota disebut semesta pembicaraan dan mempunyai paling sedikit satu elemen.
SOAL
1. Gambar flowchart untuk mengganti ban kempes sebuah mobil dengan ban reserve yang tersedia.
2. Gambar flowchart untuk menyiapkan secangkir kopi manis di pagi hari (dimulai dari memasak air hingga menghidangkan kopi).
3. Gambar flowchart untuk memilih satu bilangan terbesar dari empat bilangan.
4. Gambar flowchart untuk memilih satu bilangan terbesar dari N buah bilangan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 13
Pada prinsipnya, suatu program komputer memanipulasi data untuk menjadi informasi yang berguna. Dengan demikian, perlu dipahami beberapa hal yang berkaitan dengan data, yaitu tipe data, variabel,dan nilai data sebagai berikut:
• Tipe data: setiap data memiliki tipe data, apakah merupakan angka bulat (integer), angka biasa (real), atau berupa karakter (char), dan sebagainya.
• Variabel: setiap data diwakili oleh suatu variabel, dan variabel ini diberi nama agar bisa dibedakan terhadap variabel lainnya.
• Mai: setiap data memiliki harga atau nilai, misalnya umur seseorang diwakili oleh variabel UMUR yang bertipe bilangan, dan memiliki nilai 20 tahun. Perlu diketahui bahwa dalam representasi nilai data dada komputer, setiap tipe data memiliki batasan nilai masing-masing.
3.1 Tipe Data
Ada dua kategori dari tipe data, yaitu tipe dasar dan tipe bentukan.Tipe dasar adalah tipe data yang selalu tersedia data setiap bahasa pemrograman, antara lain bilangan bulat (integer), bilangan biasa (real), bilangan tetap (const), karakter (character atau char), logik (logic atau boolean). Tipe bentukan adalah tipe data yang dibentuk dari kombinasi tipe dasar, antara lain larik (array), rekaman (record), string (string).
Tipe Dasar
1. Bilangan bulat (integer)
• Bilangan atau angka yang tidak memiliki titik desimal atau pecahan, seperti 10, +255, -1024, +32767.
• Tipe dituliskan sebagai integer atau int
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 14
• Jangkauan nilai bergantung pada implementasi perangkat keras komputer, misalnya dari -32768 s/d +32767; untuk algoritma tidak kita batasi.
• Operasi aritmetik: tambah + , kurang - , kali * , bagi /, sisa basil bagi
• Operasi pembandingan : lebih kecil < , lebih kecil atau sama < = lebih besar > ,
lebih besar atau sama > = sama=, tidak sama ><
2. Bilangan biasa (real)
• Bilangan atau angka yang bisa memiliki titik desimal atau pecahan, dan ditulis sebagai: 235.45, +1023.55, -987.3456 atau dalam notasi ilmiah seperti: 1.245E+03, 7.45E-02, +2.34E-04, -5.43E+04, dsb.
• Tipe dituliskan sebagai : real
• Jangkauan nilai: bergantung pada implementasi perangkat keras komputer, misalnya dari -2.9E-39 s/d +1.7E+38, untuk algoritma tidak kita batasi.
• Operasi aritmatik dan pembandingan juga berlaku bagi bilangan biasa.
3. Bilangan tetap (const)
• Bilangan tetap (const) adalah tipe bilangan, baik bernilai bulat maupun tidak, yang nilainya tidak berubah selama algoritma dilaksanakan.
• Tipe dituliskan sebagai const.
• Jangkauan nilai meliputi semua bilangan yang mungkin.
4. Karakter (character)
• Karakter adalah data tunggal yang mewakili semua huruf, simbol baca, dan juga simbol angka yang tidak dapat dioperasikan secara matematis, misalnya: 'A', 'B',.., 'Z','a', 'b',.., 'z', '?', '!', ':', ';'dst.
• Tipe dituliskan sebagai char.
• Jangkauan nilai meliputi semua karakter dalam kode ASCII, atau yang tertera pada setiap tombol keyboard.
• Operasi pembandingan dapat dilakukan dan dievaluasi menurut urutan kode ASCII, sehingga huruf 'A' (Hex 41) sebenarnya lebih kecil dari huruf 'a' (Hex 61).
5. Logik (logical)
• Tipe data logik adalah tipe data yang digunakan untuk memberi nilai pada hasil pembandingan, atau kombinasi pembandingan.
• Tipe dituliskan sebagai boolean
• Jangkauan nilai ada dua: true dan false
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 15
• Contoh: 45 > 56 hasilnya false, Amir < Husni hasilnya true
• Ada beberapa operasi untuk data jenis logik, antara lain and, or, dan not
Tabel 3.1 Operasi untuk data logik
A
B
A and B
A or B
Not A
False
False
False
False
True
False
True
False
True
True
True
False
False
True
False
True
True
True
True
False
Tipe Bentukan
1. Array (larik)
• Array adalah tipe data bentukan, yang merupakan wadah untuk menampung beberapa nilai data yang sejenis. Kumpulan bilangan bulat adalah array integer, kumpulan bilangan tidak bulat adalah array real.
• Cara mendefinisikan ada dua macam, yaitu:
• Nilai ujian : array [1 .. 10] of integer; atau
• int nilai_ujian [0];
• Kedua definisi di atas menunjukkan bahwa nilai_ujian adalah kumpulan dari 10 nilai bertipe bilangan bulat.
2. String
• String adalah tipe data bentukan yang merupakan deretan karakter yang membentuk satu kata atau satu kalimat, yang biasanya diapit oleh dua tanda kutip.
• Sebagai contoh: nama, alamat, dan judul adalah tipe string.
• Cara mendefinisikannya adalah:
• String Nama, Alamat; atau
• Nama, Alamat : String;
3. Record (rekaman)
• Record adalah tipe data bentukan yang merupakan wadah untuk menampung elemen data yang tipenya tidak perlu sama dengan tujuan mewakili satu jenis objek.
• Sebagai contoh, mahasiswa sebagai satu jenis objek memiliki beberapa elemen data seperti: nomer_stb, nama, umur, t4lahir, jenkel.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 16
• Cara mendefinisikan record mahasiswa tersebut adalah sebagai berikut:
Type DataMhs : record
< nomer — stb : integer,
Nama_mhs : string,
umur : integer,
t4lahir : string,
jenkel : char;
3.2 Variabel
Variabel adalah nama yang mewakili suatu elemen data seperti: jenkel untuk jenis enis kelamin, t4lahir untuk tempat lahir, alamat untuk alamat, dan sebagainya. Ada aturan tertentu yang wajib diikuti dalam pemberian nama variabel, antara lain:
• Harus dimulai dengan abjad, tidak boleh dengan angka atau simbol.
• Tidak boleh ada spasi di antaranya
• Jangan menggunakan simbol-simbol yang bisa membingungkan seperti titik dua, titik koma, koma, dan sebagainya.
• Sebaiknya memiliki arti yang sesuai dengan elemen data.
• Sebaiknya tidak terlalu panjang.
Contoh variabel yang benar: Nama, Alamat, Nilai_Ujian
Contoh variabel yang salah: 4XYZ, IP rata, Var:+xy,458;
3.3 Pemberian Nilai
Ada dua cara yang dapat digunakan untuk memberi nilai pada suatu variabel, yaitu melalui proses assignment dan pembacaan.
Pemberian nilai dengan cara assignment mempunyai bentuk umum sebagai berikut:
• Variabel ← nilai;
• Variabell ← variabel2;
• Variabel ← ekspresi;
Contoh assignment:
• Nama ←"Ali bin AbuThalib";
• Jarak ←100.56;
• X ← Jarak;
• Rentang ←X+50-3*Y;
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 17
Pemberian nilai dengan cara pembacaan dapat dilakukan melalui instruksi pembacaan dengan bentuk umum sebagai berikut:
• read(variabel); atau
• read( variabel1, variabel2,…);
Contoh pembacaan data:
• read(Nama);
• read(Jarak, Rentang, X);
3.4 Menampilkan Nilai
Agar hasil pelaksanaan algoritma dapat dikomunikasikan atau ditayangkan maka nilai variabel yang telah diproses dalam algoritma dapat ditampilkan. Instruksi untuk menampilkan nilai variabel adalah: write(variabel,…);
Contoh penampilan nilai adalah sebagai berikut:
• write("nama anda :",Nama);
• write("nilai ujian = ", nilai);
• write("Jumlah variabel = ", X + Y + Z);
3.5 Ekspresi (Expression)
Ekspresi adalah transformasi data dan peubah dalam bentuk persamaan yang direlasikan oleh operator dan operand. Operand adalah data, tetapan, peubah, atau hasil dan suatu fungsi, sedangkan operator adalah simbol - simbol yang memiliki fungsi untuk menghubungkan operand sehingga terjadi transformasi. Jenis-jenis operator adalah sebagai berikut:
• Operator aritmetika: operator untuk melakukan fungsi aritmetika seperti: + (menjumlah), - (mengurangkan), * (mengalikan), / (membagi).
• Operator relational: operator untuk menyatakan relasi atau perbandingan antara dua operand, seperti: > (lebih besar), < (lebih kecil), >= (lebih besar atau sama), <= (lebih kecil atau sama), == (sama), != (tidak sama) atau > <, < >.
• Operator logik: operator untuk merelasikan operand secara logis, seperti && (and), ║(or), dan ! (not).
• Operator string: operator untuk memanipulasi string, seperti +
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 18
(concatenation), len (panjang string), dan substr (substring, mencuplik).
Berdasarkan jenis operator yang digunakan maka ada empat macam ekspresi, yaitu ekspresi aritmetika, ekspresi relational, ekspresi logik, dan ekspresi string.
• Ekspresi Aritmetika: ekspresi yang memuat operator aritmetika, contoh:
• T ←5 * (C + 32) / 9;
• Y←5*((a+b)/(c+d) +m/(e*f));
• Gaji ←GaPok * ( I + JumNak * 0.05 + Lembur * 1.25);
• Ekspresi Relational: ekspresi yang memuat operator relational, contoh:
• Nilai_A > Nilai_B
• (A+B)<(C+D)
• (x + 57) != (y + 34)
• Ekspresi Logik: ekspresi yang memuat operator logik, contoh:
o m← (x>y)&&(5+z)
o n ← ( !A ║ !(B&&C))
• Ekspresi String: eskpresi dengan operator string, contoh:
• Alamat ←"Jl. P. Kemerdekaan " + "Km 9 Tamalanrea"
• Hasil←"Saudara:"+Nama+ "adalah mahasiswa"
• Tengah ←Substr(Kalimat, 5, 10);
Contoh Algoritma:
1. Susun algoritma yang menghitung pajak pertambahan nilai (ppn) 12.50% dengan meminta harga barang yang dibeli dari pengguna program.
Algoritma PPN
{ menghitung pajak pertambahan nilai 12.50% dari harga barang }
Definisi Variabel
real harga, pajak, total;
Rincian Langkah
write ("Masukkan harga barang : ");
read(harga);
pajak (-- 0.125 * harga;
total = harga + pajak;
write("Harga ", harga, " pajaknya=”,pajak);
write("Total = total);
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 19
2. Susun algoritma yang meminta data dasar mahasiswa (mis: Nama, Alamat, e—mail, dan telepon) kemudian menampilkannya kembali secara tersusun.
Algoritma Data_dasar
{membaca dan menampilkan data dasar mahasiswa}
Definisi Variabel:
string nama, alamat, e–mail, telepon;
Rincian Langkah:
{proses input/perrnintaan data }
write ("Masukkan nama Anda: ");
read(nama);
write("Di mans alamatnya: ");
read(alamat);
write("No telepon: “);
read(telepon);
write("Alamat e-mail: ");
read(e_mail);
{proses tamplian hasil input }
write(nama);
write(alamat, telepon);
write(e_mail);
SOAL:
1. Definisikan sebuah record untuk data pegawai yang terdiri atas elemen Nomor_Pegawai (NIP), Nama, TgLahir, Tempat_Lahir, Jen_Kelamin, Agama, Status, Pangkat.
2. Tulis algoritma sederhana untuk membaca dan menampilkan kembali data pegawai yang sesuai dengan struktur record pada Soal 1.
3. Tulin algoritma yang meminta suhu dalam skala celcius dan menampilkan suhu tersebut dalam skala Fahrenheit. (F = 9/5 * C + 32).
4. Tulis algoritma yang membaca tiga data, yaitu nilai tugas, nilai mid, dan nilai final, kemudian menghitung nilai akhir = 20% nilai tugas + 30% nilai mid + 50% nilai final. Tampilkan nilai akhir ini.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 20
4.1 Form/Window Matlab
Sebagaimana bahasa pemrog-raman lainnya, MATLAB juga menyediakan lingkungan kerja terpadu yang sangat mendukung dalam pembangunan aplikasi. Pada setiap versi MATLAB yang terbaru, lingkungan terpadunya akan se-makin dilengkapi. Lingkungan terpadu ini terdiri atas beberapa form/window yang memiliki ~egunaan masing-masing. Untuk memulai aplikasi Matlab, anda hanya perlu mengklik kon Matlab pada Dekstop window, atau bisa juga dengan menu start seperti pada aplikasi-aplikasi lainnya.
Setiap pertama kali mulai membuka aplikasi Matlab, anda akan memperoleh beberapa form/window, yang sebenarnya menurut oenulis hanya membuat dekstop anda <elihatan penuh.
Matlab akan menyimpan mode/setting terakhir lingkungan Kerja yang anda gunakan sebagai mode/setting lingkungan kerja pada saat anda membuka aplikasi Matlab di waktu berikutnya.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 21
4.1.1. Windows Utama Matlab
Window ini adalah window induk yang melingkupi seluruh lingkungan kerja MATLAB. Pada versi-versi pendahulu, window ini secara khusus belum ada namun terintegrasi dengan Command Window. Tidak ada fungsi utama yang ditawarkan oleh window ini selain sebagai tempat dock-ing bagi form yang lain.
4.1.2. Workspace Windows
Window ini juga barn diperkenalkan pada versi 6, berfungsi sebagai navigator bagi pemakai dalam penyediaan informasi mengenai 'eariabel yang sedang aktif dalam workspace pada saat pemakaian. Workspace adalah suatu lingkungan abstrak yang menyimpan seluruh .'ariabel dan perintah yang pernah digunakan selama penggunaan MATLAB berlangsung.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 22
4.1.3. Current Directory Window
Window ini juga fasilitas yang diperkenalkan pada versi 6. Berfungsi sebagai browser direktori aktif, yang hampir sama dengan window explorer.
4.1.4. Comand History Window
Window ini berfungsi sebagai penyimpan perintah-perintah yang pernah dikerjakan pada suatu workspace. Juga barn ada pada Matlab versi 6 keatas.
4.1.5. Comand Window
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 23
Window ini berfungsi sebagai penerima perintah dari pemakai untuk menjalankan seluruh fungsi-fungsi yang disediakan oleh MATLAB. Pada dasarnya window inilah inti dari pemrograman MATLAB yang menjadi media utama satu-satunya bagi kits untuk berinteraks dengan MATLAB.
4.2. Cara Bekerja Dengan MATLAB
Dalam melakukan pekerjaan pemrograman menggunakan bahasa MATLAB. anda dapat menggunakan salah satu cara yaitu :
Cara #1 : LanjZsunjZ di Command Window
Zara ini adalah yang paling sering dilakukan oleh pemula, namun mar sulit bagi anda untuk mengevaluasi perintah secara keseluruhan q,z-=r.a biasanya perintah hanya dilakukan baris perbaris.
Untuk membuat program, anda hanya perlu mengetikkan perintah pada prompt Matlab dalam Command Window, misalnya :
>>pjg = 5;
tekan tombol enter, lalu ketikkan :
>>lbr = 10;
tekan tombol enter, lalu ketikkan :
>>luas = pjg*lbr
untuk skrip terakhir sengaja tidak diberikan tanda (;) titik koma, sehingga anda bisa langsung melihat hasil akhir dilayar Command Window.
Hasil akhir yaitu
>>luas =
50
Program telah selesai.
Cara #2 : Menjzkunakan File M
Cara ini biasanya akan dipilih untuk digunakan oleh programmer yang lebih mahir (jangan khawatir dalam beberapa menit kedepan, anda pun akan menjadi salah satu dari kelompok ini (D ). Kelebihan cara ini adalah kemudahan untuk meng-evaluasi perintah secara keseluruhan. Terutama untuk program yang membutuhkan waktu pengerjaan yang cukup lama serta skrip yang cukup
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 24
panjang.
Untuk contoh dapat kita gunakan program yang sebelumnya anda kerjakan dengan cara pertama, dengan tahapan sebagai berikut :
1. Pada Command Window, ketikkan:
>>edit
2. Tekan enter, selanjutnya muncul Matlab Editor dan anda ketiklah program dibawah berikut :
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
% Program latihan 1
% Matlab Programing
% Oleh : Wayan Made Komang
%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
clear all;
clc;
disp (‘‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‘)
disp (‘Program Latihan 1’)
disp (‘‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‘)
pjg = 5;
lbr = 10 ;
luas = pjg * lbr;
disp ([‘luas ‐> ‘ num2str(luas)]);
Anda bingung dengan apa yang barn anda ketikkan? Tidak masalah, kata orang pintar "bingung pertanda mulai belajar", pada bab-bab berikutnya akan anda pelajari dan anda. Akan sangat mengerti dengan apa yang anda ketik. Untuk tahap ini anda ikuti dulu oke!
3. Setelah selesai mengetik program diatas, anda simpan di direktori c1latilhanku, dengan nama latihan0l.m.
4. Anda kembali ke Command Window. Agar Matlab dapat mengenali lokasi tempat file anda tersimpan, pada prompt Matlab ketiklah direktori c:/latihanku pada prompt Matlab :
>>cd c:\latihanku
5. Tekan Enter, lalu ketiklah nama file latihan 01 tanpa ekstensi:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 25
>>latihan01
6. Tekan Enter, selanjutnya program akan dijalankan dan menghasikan sebagai berikut:
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Program Latihan 1
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Luas ‐> 100
Jika tahap enam telah dicapai, maka program pertama telah sukses anda kerjakan. Selamat datang dan bergabung sebagai programmer Matlab.
Manajemen File dan Direktori
Matlab menggunakan metode path searching (pencarian direktori) untuk menemukan file dengan ektensi M yang mengandung skrip dan fungsi. File M MATLAB terorganisir dengan rapi pada beberapa folder/direktori. Urutan pencarian MATLAB dalam menjalankan perintah pada Command Window secara bertahap adalah sebagai berikut, misalnya ketika diberi perintah’kubus’:
• MATLAB mencoba untuk mengenali apakah ‘kubus’ adalah variabel,jika ya, selesai. Jika tidak, maka MATLAB berasumsi bahwa ‘kubus’ adalah sebuah nama file dengan ekstensi M, lanjut ketahap berikutnya.
• Matlab mencoba untuk mengenali apakah’kubus’ merupakan fungsi bawaan standar, jika ya, eksekusi. Jika tidak, lanjut kethp berikutnya.
• Matlab akan mencari file M yang bernama kubus.m pada direktori aktif (current directory), jika ditemukan, eksekusi. Jika tidak lanjut ketahp berikutnya.
• Matlab akan mencari file M yang bernama kubus.m diseluruh direktori yang terdaftar pada daftar pencariannya, jika ditemukan, eksekusi. Jika tidak, Matlab akan menyampaikan pesan sebagai berikut:
>> kubus
??? Undefined function or variabel ‘kubus’
Jika pesan diatas muncul kehadapan anda, maka kesimpulannya hanya ada 2,
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 26
yaitu:
1. Anda salah menulis nama file, atau
2. File anda tidak berada dalam direktori yang diketahui oleh Matlab.
Jika anda yakin nama file yang anda ketikkan benar, maka yang harus anda lkukan juga ada 2 pilihan, yaitu:
1. Memindahkan direktori aktif ke direktori tempat file anda berada.
Misalkan direktori tempa anda menyimpan file adalah c:/latihanku. Maka caranya adalah dengan perintah sebagai berikut:
Tekan enter, maka selanjutnya direktori aktif adalah c:\latihanku.
>>cd c:\latihanku
2. Menambahkan direktori anda ke dalam daftar pencarian direktori Matlab.
Untuk membuka tool yang mengatur pencarian path ini dapat dilakukan dengan cara meng-klik set path pada menu File sebagai berikut:
Selanjutnya akan muncul dialog set path sebagai berikut:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 27
Setelah melakukan pemilihan folder yang diinginkan dengan cara meng klik tombol Add Folder, lalu dilanjutkan dengan meng klik tombol save dan diakhiri dengn tombol Close. Maka direktori anda telah tersimpan didaftar pencarian direktori Matlab.
Jika anda memilih menggunakan cara pertama , maka setiap anda membuka aplikasi Matlab anda harus melakukannya lgi. Tetapi, jika anda memilih cara kedua, maka anda tidak perlu melakukannya lagi pada kesempatan lainnya, kecuali kjika nama direktori anda telah berubah.
Penting
Pemahaman yang benar tentang cara kerja Matlab katika melakukan eksekusi program ini sangat penting. Dari pengalaman penulis, permasalahan yang paling banyak diajukan pada saat penulis melayani konsultasi program adalah yang berhubungan dengan penempatan file program dan penamaan file yang overlap dengan fungsi standar yang dimiliki Matlab.
SOAL:
1. Buatlah dengan program matlab dari luas ruangan pertemuan yang memiliki panjang 12 meter dan lebar 8 meter. Buat dengan menggunakan command windows langsung dan M-file.
2. Buat dengan model M-file ! Suatu silinder memiliki jari-jari 60 cm, dan tinggi dari silinder tersebut 150 cm. hitung luas selimut silinder dan volume silinder jika nilai pi = 3,14.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 28
5.1 Fungsi Matematika Umum
Fungsi matematika umum dalam MATLAB terdiri atas fungsi trigonometri, fungsi eksponensial, fungsi berkait bilangan kompleks serta fungsi pembulatan dan sisa. Pada sub bagian berikut akan diuraikan fungsi-fungsi tersebut lengkap dengan syntax-nya dalam MATLAB. (note: tanda “ “ menunjukkan syntaxnya dan “x” adalah bilangan konstan).
5.1.1 Fungsi trigonometri
Fungsi dasar trigonometri terdiri atas sinus, cosinus dan tangen. Fungsi tersebut dikembangkan menjadi secan, cosecan dan cotangen. Lebih lanjut fungsi-fungsi trigonometri dapat dikembangkan menjadi bentuk hiperbolik. Operasi yang dapat dilakukan pada fungsi tersebut adalah pencarian nilai dan invers (Arcus disingkatArc). Dalam MATLAB, setiap fungsi trigonometri mempunyai syntax tersendiri. Fungsi trigonometri lengkap dengan syntaxnya akan diperlihatkan pads uraian berikut:
• Fungsi sinus
Sinus x sin (x) : Arc sinus x asin (x)
Sinus hiperbolik x sinh (x) : Arc sinus hiperbolik x asinh (x)
• Fungsi cosinus
Cosinus x cos (x): Arc cosinus x acos (x)
Cosinus hiperbolik x cosh (x) : Arc cosinus hiperbollk x acosh (x)
• Fungsi Tangen
Tangen x tan (x): rc tangen x atan (x)
Tangen hiperbolik x tanh (x): Arc tangen hiperbolik x atanh (x)
• Fungsi Secan
Secan x sec (x): Arc secan x asec (x)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 29
Secan hiperbolik x sech (x) : Arc secan hiperbolik asech (x)
• Fungsi Cosecan
Cosecan x csc (x) : Arc cosecan x acsc (x)
Cosecan hiperbolik x csch (x):Arc cosecan hiperbolik x acsch (x)
• Fungsi Cotangen
Cotangen x cot (x) : Arc Cotangen x acot (x)
Cotangen hiperbolik x coth (x) : Arc cotan hiperbolik x acoth (x)
5.1.2 Fungsi eksponensial
Fungsi eksponensial secara matematis mempunyai beberapa bentuk. Pada uraian berikut akan diperlihatkan beberapa fungsi eksponensial lengkap dengan syntax-nya.
• Eksponensial : exp (x) , fungsi ini digunakan untuk mencari nilai ex, dengan e adalah bilangan natural (e=2,718281824459... ).
• Logaritma berbasis bilangan natural (e): elog x atau In x log (x), fungsi ini digunakan untuk mencari nilai logaritma berbasis ex.
• Logaritma berbasis bilangan konstan, misal y: ylog x’ 1ogy (x) , fungsi ini digunakan untuk mencari nilai logaritma berbasis y. Jadi, logaritma berbasis 10 tidak seperti biasanya yaitu ditulis dengan log x saja, tetapi dianggap sebagai bilangan y. Jadi, dalam MATLAB: 101og x ditulis log10 (x).
• Akar pangkat dua: sqrt (x), fungsi ini berguna untuk mencari akar pangkat dua dari x.
5.1.3 Fungsi yang berkait bilangan kompleks
Fungsi yang berkait bilangan kompleks, dalam MATLAB dituliskan dengan penambahan "i" atau"j" dibelakang bilangan pokok. Bilangan kompleks dapat dinyatakan dalam bentuk real atau sebaliknya. Pada uraian berikut diperlihatkan beberapa fungsi eksponensial lengkap dengan syntax-nya.
• Nilai mutlak: , digunakan untuk mencari nilai mutlak bilangan atau
• Nilai riff , digunakan untuk mengambil nilai real dari bilangan kompleks
• Nilai imajiner , digunakan untuk mengambil nilai imajiner dari
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 30
bilangan kompleks
5.1.4 Fungsi pembulatan dan sisa
Fungsi pembulatan dan sisa dalam MATLAB, digunakan untuk menuliskan bilangan rill dalam bentuk bilangan bulat positif atau negatif.
• Pembulatan menuju integer terdekat: round (x) , fungsi ini digunakan untuk membulatkan x ke nilai integer terdekat.
Misal:
round (3.84) menghasilkan 4 dan round (-3.84) menghasilkan -4
round (0. 52) menghasilkan 1 dan round (-0. 52) menghasilkan -1
• Pendekatan menuju nol: fix (x), fungsi ini digunakan untuk membulatkan x ke nilai yang lebih dekat 0.
Misal:
fix (3. 84) menghasilkan 3 dan fix (-3. 84) menghasilkan -3
fix (5.32) menghasilkan 5 dan fix (-5.32) menghasilkan - 5
f ix (0. 52) menghasilkan 0 dan fix (-0.52) menghasilkan 0
• Pembulatan menuju -∞: flor (x) , fungsi ini digunakan untuk membulatkan x ke nilai yang lebih mendekati -∞.
Misal:
flor (3. 84) menghasilkan 3 dan f lor(-3.84) menghasilkan -4
f !or (5.32) menghasilkan 5 dan flor (-5.32) menghasilkan – 5
flor (0.52) menghasilkan 0 dan f lor (-0.52) menghasilkan -1
• Pembulatan menuju +∞: ceil (x), fungsi ini digunakan untuk membulatkan x ke nilai yang lebih dekat +∞.
Misal:
ceil (3.84) menghasilkan 4 clan ceil (-3.84) menghasilkan -4
ceil (5.32) menghasilkan 5 clan ceil (-5.32) menghasilkan -5
ceil (0.52) menghasilkan 4 clan ceil (-0.52) menghasilkan 0
• Sisa setelah pembagian: rem (x, y), fungsi ini digunakan untuk mengambil sisa dari x/y dengan tanda yang sama dengan x.
Misal:
rem (15.2) menghasilkan 1 clan rem (-15.2) menghasilkan -1
rem (-13.5) menghasilkan - 3 dan rem (13.5) menghasilkan 3
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 31
5.2 Format Penampilan Angka
Format penampilan angka dalam MATLAB, digunakan untuk mengatur tampilan hasil perhitungan pada Command Window. Jika hasil perhitungan berupa bilangan bulat, MATLAB akan menampilkan sebagai bilangan bulat, sedangkan bilangan rill, ditampilkan dengan empat bilangan desimal. Tampilan ini dapat diatur dengan format penampilan angka dalam MATLAB. Misal: y = 100/3, dalam kedaan biasa (tanpa pengaturan format) y akan ditampilkan dengan format 33.3333. Berikut ini diuraikan beberapa perintah untuk mengatur penampilan angka pada Command Window lengkap dengan syntax-nya.
• format short: menghasilkan 33.3333
• format long: menghasilkan 33 .333333333334
• format short e: menghasilkan 3.3333e+001
• format long e: menghasilkan 3.333333333334e+001
• format short g: menghasilkan 33.333
• format long g: menghasilkan 33. 333333333333
• format hex: menghasilkan 4040aaaaaaaaaaab
• format bank: menghasilkan 33.33
• format +: menghasilkan +
• format rat: menghasilkan 100/3
Penting untuk diketahui bahwa format penampilan angka dalam MATLAB tidak mengubah representasi internal dari suatu bilangan.
5.3 Array dan Matriks
Array adalah kumpulan data-data scalar yang dinyatakan dalam bentuk baris, kolom dan gabungan antar keduanya. Kumpulan data dengan deret yang tidak teratur mengharuskan pemakai untuk menuliskan data satu per satu. Kumpulan data dengan deret yang teratur dapat diekspresikan dalam bentuk array, sehingga memungkinkan pemakai untuk tidak menuliskannya satu per satu.
Matriks adalah array yang dibangun dari kumpulan persamaan linear. Operasi matriks tidak seperti pada array biasa, melainkan sistem operasi aljabar matriks. Pada pembahasan selanjutnya, matriks diuraikan dengan array data yang teratur, karena akan
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 32
sering dipergunakan pada pemograman tingkat lanjut.
5.3.1 Pembentukan array dan matriks
Array dan matriks ditampilkan dalam bentuk yang sama tetapi representasi internalnya berbeda. Berikut ini adalah perintah untuk membentuk array.
• x=m: n, membuat baris dengan elemen awal m, kenaikan 1 dan elemen akhir n atau sebelum n.
Misal:
Perintah x=1: 10 akan membuat barisan dengan elemen dimulai dari 1, bertambah 1 dan berakhir pada 10.
• x=m: k: n, membuat baris dengan elemen awal m, kenaikan k dan elemen akhir n atau sebelum n.
Misal:
Perintah x=1:2:20 akan membuat barisan dengan elemen dimulai dari 1, bertambah 2 dan berakhir pada 19.
• x=linspace (m, n, k) , membuat baris dengan elemen awal m dan elemen akhir, dengan jumlah elemen sebanyak k.
Misal:
Perintah x=linspace (1, 30,10) akan menampilkan baris dengan elemen awal bernilai 1 dan elemen akhir bernilai 30 dengan jumlah elemen sebanyak 10.
• x=logspace (m, n, k) , membuat baris dengan elemen awal m dan elemen akhir n dengan jumlah elemen sebanyak k dalam skala logaritma.
Misal:
Perintah x=logspace (1, 30,10) akan menampilkan bads dengan elemen awal bemilai 10 dan elemen akhir bemilai 10 dengan jumlah elemen 10.
• x=ones (m) , membuat array segiempat ukuran m x m dengan semua elemennya bernilai 1.
Misal:
Perintah x=ones (5) akan menampilkan array segiempat ukuran 5 x 5 dengan semua elemennya bernilai 1
• x=ones (m, n) , membuat array segiempat ukuran m x n dengan semua elemennya bernilai
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 33
1
Misal:
Perintah x=ones (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan semua elemennya bernilai 1.
• x=zeros (m) , membuat array segiempat ukuran in m x m dengan semua elemennya bernilai 0.
Misal:
Perintah x=zeros (5) akan menampilkan array segiempat ukuran 5 x 5 dengan semua elemennya bernilai 0.
• x=zeros (m, n) , membuat array segiempat ukuran m x n dengan semua elemennya bernilai 0.
Misal:
Perintah x=zeros (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan semua elemennya bernilai 0.
• x=rand (m, n) , membuat array segiempat ukuran m x n dengan elemen-elemennya berupa bilangan random yang terdistribusi uniform dengan interval 0,0 sampai 1,0.
Misal:
Perintah x=rand (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan elemen-elemennya berupa bilangan random yang terdistribusi uniform dengan interval 0,0 sampai 1,0.
• x=randn (m, n) , membuat array segiempat ukuran m x n dengan elemen-elemennya berupa bilangan random yang terdistribusi normal dengan mean = 0 dan variasi = 1.
Misal:
Perintah x=randn (2, 5) akan menampilkan array segiempat ukuran 2 x 5 dengan elemen-elemennya berupa bilangan random yang terdistribusi normal dengan mean = 0 dan variasi = 1.
Array dapat dinyatakan dalam bentuk matriks dengan memasukkan semua perintah pada ruas kanan ke dalam kurung komutasi. Misal: array x=m: n dapat dinyatakan dalam bentuk matriks dengan perintah x= [m: n] .
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 34
5.3.2. Operasi array
Operasi array merupakan operasi skalarterhadap elemen-elemennya. Misal diketahui suatu data:
a= [a, a2 a3…an ] ;b = [bI b 2 b 3… bn.]; c = c, operasi array yang dapat dilakukan adalah:
• Penambahan skalar: a+c=[a1+c a2+c a3+c ... an+c]
• Perkalian skalar: a*c= [al*c a2*c a3*c ... an*c]
• Penambahan array: a+b= [al+bl a2+b2 a3+b3 ... an+bn]
• Perkalian array: a. *b= [al*bl a2*b2 a3*b3...an*bn]
• Pembagian kanan array: a. /b= [al/bl a2/b2 a3/b3...an/bn]
• Pembagian kiri array: a. \b= [al\bl a2\b2 a3\b3 ... an\bn]
• Pemangkatan array-skalar-.a.^c=[al^c a2^c a3^c ... an^c]
• Pemangkatan skalar-array:c. ^a=[c^ai c^a2 c^a3 ... c^an]
• Pemangkatan array-array: a. ^b= [al^bi a2^b2 a3 ^b3 ... an^bn]
5.3.3 Operasi matriks
Operasi pada matriks dilakukan dengan menggunakan prinsip aljabar matriks. Berikut ini diuraikan beberapa operasi matiks.
• Transpose matriks: X = A => At X=A'
• Penjumlahan matriks: X = A => At X=A+B.
• Pengurangan matriks: X = A => At ---> X=A-B.
• Perkalian matriks: X = A => At --->X=A*B.
Operasi matriks lainnya seperti invers, determinan dan sebagainya dapat dilakukan jika syarat-syarat aljabar matriks terpenuhi. Bentuk seperti ini sering digunakan dalam analisis numerik untuk fisika komputasi.
5.3.4 Manipulasi array dan matriks
Manipulasi terhadap array dan matriks dapat mereduksi kerumitan metode komputasi. Misal dalam perhitungan numerik diketahui array data dengan variable induk A yang terdiri atas gabungan antara baris dan kolom. Array tersebut dapat dimodifikasi dengan perintah pengalamatan.
•A (i, j),mengalamati sub array A dengan indeks baris i dan kolom j.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 35
•A (i, :), mengalamati sub array A pada semua kolom j.
•A(:, j), mengalamati sub array A dengan semua baris pada kolom j .
• A(:), mengalamati sub array A dengan semua baris pada semua kolom.
Pengalamatan yang dilakukan terhadap elemen array dapat digunakan untuk pangalamatan elemen matriks dengan ketentuan array tersebut sebelumnya telah dinyatakan dalam bentuk matriks.
5.4 Konsep Dasar Kontrol Program
Perhitungan komputasi dengan deret teratur dalam MATLAB dapat dilakukan dengan statement tertentu. Statement tersebut untuk menyatakan kondisi, pemberhentian operasi dan iterasi. Statement-statement ini sering dikenal dengan nama kontrol program.
Kontrol program sangat berguna, karena memungkinkan perhitungan sebelum kondisi tertentu mempengaruhi perhitungan selanjutnya dalam satu kesatuan program. Kontrol program mempunyai fungsi dan keunggulan tersendiri bergantung pada kebutuhan pemrograman.
5.4.1 Statement if
Statement if akan mengeksekusi sekumpulan instruksi apabila suatu kondisi yang diisyaratkan bemilai benar. Statement if diakhiri dengan end. Jika ada kondisi yang berlawanan (false), statement if dapat diikuti dengan statement else atau elseif.
Contoh 1:
x=input('Masukan bilangan bulat x=')
if rem(x,2)==0
X=' == GENAP==’
else
X=' == GANJIL =='
end
Contoh 1 akan mengidentifikasi sifat bilangan X, apakah termasuk bilangan ganjil atau genap.
5.4.2 Statement switch
Statement switch akan mengeksekusi sekumpulan instruksi didasarkan pada nilai dari suatu ekspresi atau variabel. Statement switch diikuti dengan case
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 36
dan otherwise untuk menunjukan suatu group dalam looping. Statement ini diakhiri dengan end.
Contoh 2:
clear;
X=input ('masukkan bilangan bulat X=');
Y=input (Imasukkan pembagi Y=');
Sisa=rem(X,Y)
switch Sisa
case 10
NilaiSisa='A'
case 11
Nilaisisa='B'
Case 12
Nilaisisa='C'
case 13
Nilaisisa='D'
case 14
Nilaisisa='E'
otherwise
NilaiSisa=int2str(sisa)%konversi integer ke string end;
Contoh 2 mengambil sisa pembagi dari X/Y kemudian dikelompokkan dalam bentuk abjad. Jika program tersebut dijalankan, pada Command Window akan tampil 6 kemungkinan, yaitu:
• Jika Sisa=10, maka Nilaisisa=A
• Jika Sisa=11, maka Nilaisisa=B
• Jika Sisa=12, maka Nilaisisa=C
• Jika Sisa=13, maka Nilaisisa=D
• Jika Sisa=14, maka Nilaisisa=E
• Jika Sisa=bilangan lain, Nilaisisa=Sisa
5.4.3 Statement for
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 37
Statement for digunakan untuk mengulang sekumpulan instruksi hingga n kali (notasi n adalah bilangan integer yang telah diidentifikasi sebelumnya). Statement for diakhiri dengan end.
Contoh 3:
X=rand(50,1)
Xmax=realmin
for i=1:50
if X(i)>Xmax
Xmax=X(i)
end;
end;
Contoh 3 memperagakan cara mencad nilai terbesar dad array X. Nilai tersebut akan disimpan dalam variabel Xmax
5.4.4 Statement while
Statement while mengerjakan sekelompok perintah yang diulang secara tidak terbatas. Statement while diakhiri dengan end. Perintah antara loop while dan end dieksekusi berulang kali selama semua elemen dalam ekspresi bernilai benar.
Contoh 4:
hitungan=0; X=1:
while (1+X)>l
X=X/2
hitungan=hitungan+l
end
Contoh 4 memperagakan cara menghitung nilai terkecil yang dapat ditambah pada 1 sedemikian hingga hasilnya lebih besar dari dengan menggunakan presisi hingga. Selama (1 +X) > 1 benar, perintah yang terdapat dalam loop while akan dikerjakan terns menerus. Karena X terus menerus dibagi 2, maka X semakin kecil hingga didapat suatu kondisi yang unik, yaitu penambahan X pada 1 tidak mendapatkan hasil yang lebih besar dari 1 menurut hitungan komputasi. Jika kondisi tersebut terpenuhi, maka loop while berhenti bekerja atau kondisi (1+X)> 1 bernilai salah. Kondisi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 38
tersebut dicapai pada hitungan ke-53.
5.4.5 Statement break
Statement break digunakan untuk keluar lebih awal dari suatu loop for dan while jika kondisi yang diinginkan sudah tercapai. Melanjutkan contoh sebelumnya untuk mencari nilai terkecil yang tidak merubah nilai 1 jika ditambah X, persoalan tersebut dikerjakan pada loop for dan if dengan urutan 1 sampai 1000. sebelumnya sudah diketahui bahwa kondisi yang diinginkan akan tercapai pada hitungan ke-53, tetapi komputer tidak berhenti karena loop for menginstruksikan perhitungan sampai pada step ke-1000. Statement break digunakan untuk menghentikan looping for.
Contoh 5:
X=1
for hitungan=1:1000
X=X/2;
if (1+X)<=1
X=X+2
hitungan=hitungan
break
end
end
Dalam kasus ini hitungan hanya melompati struktur yang ditempati. Jadi, pada loop bertingkat statement break harus dibuat tersendiri.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 39
6.1 Membangun Data
Dalam beberapa kasus program sering ditemui penggunaan data inisial dalam bentuk matrik atau array, misalnya matrik nol, matrik identitas dan lain-lain.
Secara sederhana MATLAB menyediakan beberapa teknik untuk membangun data dengan cepat, sebagai berikut:
• Membangun data dengan elemen yang telah ditentukan
Misalnya anda akan membangun data x dengan nilai yang telah diketahui, maka cara penulisannya sebagai berikut:
Untuk data vektor baris
Untuk data vektor kolom
Untuk data bentuk matrik
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 40
• Membangun data dengan batas awal dan batas akhir
Misalnya anda ingin membuat data sudut dari sudut 30 derajat samapi 35 derajat, maka cara penulisannya adalah sebagai berikut:
• Membangun data dengan batas awal, increment dan batas akhir
Misalnya anda ingin membuat data sudut dari sudut 30 derajat samapi 90 derajat dengan pertambahan 10, maka cara penulisannya adalah sebagai berikut:
• Membangun data dengan batas awal dan batas akhir, tetapi jumlah data ditentukan.
Misalnya anda ingin membuat data 5 buah sudut dalam interval sudut 30 derajat sampai 90 derajat, maka cara penulisannya adalah sebagai berikut:
• Membangun data logaritma dengan batas awal dan batas akhir, tetapi jumlah data ditentukan.
Misalnya anda ingin membuat data 5 nilai yang berada dalam interval 102 dan 104, maka caranya adalah sebagai berikut:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 41
• Membangun data menggunakan standar matrik MATLAB.
Cara membuat data matrik dengan semua elemen bernilai 1:
Cara membuat data matrik dengan semua elemen bernilai 0:
Membuat data matrik identitas, caranya sebagai berikut:
• Membangun data Random
Data random sangat penting digunakan dalam pemrograman, khususnya bidang pemodelan matemtika. MATLAB menyediakan cara cepat untuk membangkitkan data random sebagai berikut:
Terlihat bahwa data random yang dihasilkan berada dlama interval 0 dan 1. Lalu bagaimana caranya untuk membangkitkan data random dengan interval lainnya, misalnya ineterval 5 dan 7?
Berikut ini adalah sintak membangkitkan data random dengan interval:
Variabel = (akhir‐(rand()*(akhir‐awal)))
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 42
Contoh pemakaian dalam program adalah sebagai berikut:
6.2 Orientasi dan Augmentasi data
Merubah orientasi dan menempelkan data (data augmented) sangat umum digunakan dalam program. Pada bahasa pemrograman yang lain mungkin hal tersebut menjadi gampang-gampang sulit. Tetapi tentu saja pada MATLAB hal tersebut menjadi sangat-sangat mudah.
• Mengubah Orientasi data dengan Transpos
• Menempelkan data pada baris
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 43
• Menempelkan data pada kolom
6.3 Pengurutan Data
Teknik pengurutan data sangat sering digunakan dalam program pengolahan data. MATLAB menyediakan fungsi khusus yaitu sort untuk melakukan pengurutan. Menggunakan sort dapat dengan dua cara. Cara pertama digunakan untuk mengurutkan data pada arah kolom, sintaknya sebagai berikut:
var2=sort (var1,1)
var1 adalah matrik atau vektor yang akan diurutkan. Berikut adalah cara menggunakannya dalam program:
Cara kedua digunakan untuk mengurutkan data pada arah baris, sintaknya sebagai berikut:
var2= sort(var1,2)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 44
Var1 adalah matrik atau vektor yang akan diurutkan. Berikut adalah cara menggunakannya dalam program:
6.4 Menyeleksi Data
Melakukan pemrograman untuk pengolahan data, pasti tidak luput dari seleksi data. Menyeleksi data berarti menggunakan sebagian data dari sebuah data yang lengkap tanpa merusak ukuran maupun nilai data tersebut. Untuk melakukan seleksi data, anda dapat mempergunakan ekspresi matematika =, =,>,>=,< dan <=.
Cara menyeleksi data untuk mengambil nilai elemen dari sebuah matrik, adalah sebagai berikut:
Program diatas maksudnya adalah menyeleksi elemen pada data a, dengan syarat elemen tersebut lebih besar dari 7, lalu hasilnya disimpan pada variable b.
Cara kerja seleksi data adalah membangkitkan matrik bernilai 0 dan 1, sesuai kondisi yang diberikan, jika memenuhi kondisi, elemen matrik bernilai 1, jika tidak, maka elemen matrik bernilai 0.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 45
>> c = (a ~ =7)
C =
1 1 1
1 1 0
0 1 1
Maka untuk mendapatkan nilai yang terseleksi, kalikan hasil diatas dengan data asal. Gunakan perkalian elemen!!
>> c =(a~=7)*a
c =
2 3 1
9 6 0
0 9 5
Banyak kemudahan yang ditawarkan MATLAB, namun efektifitas pemrogramannya hanya akan tercapai jika kita mampu menerapkan metode-metode manipulasi data dalam skrip program. Umumnya programmer yang memiliki dasar pemrograman procedural mengabaikan hal ini, sehingga efektifitas penulisan skrip dan kecepatan proses runtime tidak diperoleh secara maksimal.
Dengan menggunakan teknik-teknik manipulasi diatas, sebisa mungkin hindari pemakaian control flow (perulangan dan kondisional) yang melibatkan operasi elemen-elemen data seperti pada pemrograman konvensional. Karena walaupun MATLAB menyediakan fasilitas untuk itu, MATLAB tidak didesain untuk hal tersebut. Akibatnya waktu yang digunakan MATLAB untuk menjalankan program anda akan cukup lama.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 46
7.1 Perintah Dasar menggambar Grafik
Program MATLAB mempunyai fasilitas menggambar hasil perhitungan komputasi secara grafis. Instruksi yang bisa digunakan untuk menggambar grafik, sebagian diantaranya telah dibahas pads tutorial Bab 1. Pada bab ini akan dibahas berbagai Instruksi untuk menggambar grafik dalam MATLAB.
Elemen dasar yang dibutuhkan untuk menggambar grafik adalah data dalam bentuk array. Misal, MATLAB diberi perintah membuat arraydalam bentuk sudut Ɵ dari 0 sampai 2 sebanyak 30 data. Dalam MATLAB, array tersebut dinyatakan dengan variabel Theta untuk menentukan nilai x= sinƟ. Persoalan seperti ini dapat dibuat dalam MATLAB dengan listing program:
Theta=linspace(0,2*pi,30)
X=sin(Theta)
Program ini dapat dilengkapi dengan syntax untuk menggambar grafik fungsi sinus. Instruksi yang boleh digunakan adalah:
• Plot: (Theta): menggambar grafik Ɵ tehadap indeksnya.
• Plot (Theta, x) : menggarnbar grafik x terhadap Ɵ, dengan syarat panjang array data Ɵ dan x sama.
• Plot (Theta, x,bt-cing). menggambar grafikx, terhadap Ɵ, dengan karakter berupa string. Karakter string boleh berupa: warna, tipe titik data dan tipe garis penghubung titik data dari grafik yang di-plot.
Sebagai contoh, akan digambar fungsi sinus 1 periode terhadap data Ɵ dengan karakteristik:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 47
warna: merah (r=red), tipe titik data: lingkaran (o) dan tipe garis penghubung data: titik-titik ( : ). Program sederhana untuk problem ini adalah:
Theta=linspace(0,2*pi,30)
X=sin(Theta)
Plot(Theta,x,'ro:')
Grafik yang dihasilkan dipedihatkan pada Gambar dibawah:
Gambar 7.1 Contoh plot grafik sinus
Karakteristik grafik pada Gambar 5.1 dapat dimodifikasi dengan string seperti pada Tabel dibawah:
Warna
Simbol
Titik data
Simbol
Garis
penghubung data
Simbol
merah
r
titik
.
garis lurus
-
biru
b
lingkaran
o
titik-titik
:
kuning
y
tanda silang
x
garis-titik
-.
hijau
g
tanda plus
+
garis putus-putus
- -
ungu
M.
tanda bintang
*
putih
w
tanda kotak
s
hitam
k
tanda berlian
d
biro muda
c
tanda pentagram
tanda heksagram
p
h
Tabel 7.1 Karakter string pada grafik
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 48
7.2 Memberi Judul dan Label Pada Grafik
Grafik pads Gambar 5.1 belum mempunyai judul pada bagian atas dan label pada setiap sumbu. Perintah untuk memberi judul dan label adalah:
• title('text','fontsize',size,'fontname','name')
• xlabel('text','fontsize',size,'fontname','name')
• ylabel(‘text’,’fontsize',size,’fontname’,’name’)
• zlabel('text','fontsize',size,'fontname','name')
Dengan text adalah nama judul atau label, fontsize adalah perintah pengaturan ukuran huruf, size adalah ukuran huruf, fontname adalah perintah pengaturan jenis huruf, name adalah jenis huruf. Sebagai contoh, grafik pada Gambar 5.1 dapat dilengkapi dengan instruksi berikut:
Theta=linspace(0,2*pi,30)
x=sin(Theta)
plot(Theta,x,'ro:')
title (‘Grafik fungsi sinus’,’fontsize’,12,’fontname’,’Arial’)
x1abel (' Sudut dalam radian’,’fontsize',10,’fontname’,'Arial’)
ylabel('Nilai sinus' ,'fontsize', 10, ‘fontname’, 'Arial’)
Dengan menjalankan program ini, akan diperoleh sebuah grafik lengkap dengan keterangannya seperti pada Gambar dibawah:
Gambar 7.2 Grafik fungsi sinus 1 periode lengkap dengan judul dan label
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 49
7.3 Memberi Grid dan Legend
Perintah grid dan legend digunakan untuk memberi grid dan legend pada grafik. Misal, diketahui fungsi sinus 1 periode y1 = sin t. Fungsi tersebut mengalami pergeseran sejauh y2 =sin(t+1/2)dan y3=sin(t+1/4). Ketiganya dapat digambarkan dalam satu grafik yang dilengkapi grid dan -legend.
clear;
t=0:pi/100:2*pi
y1=sin(t)
y2=sin(t+0.5)
y3=sin(t‐0.25)
plot(t,y1,'r‐',t,y2,'b:',t,y3,'m–')
title (‘Grafik fungsi
sinus','fontsize',16,'fontname','Arial')
xlabel('Sudut dalam
radian','fontsize',14,'fontname','Arial')
ylabel('Nilai
sinus','fontsize',14,'fontname','Arial')
grid
legend('t','t+0.5','t‐0.25')
Jika program tersebut dijalankan, akan diperoleh grafik seperti Gambar dibawah:
Gambar 7.3 Grafik fungsi sinus lengkap dengan grid dan legend
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 50
7.4 Membentuk Subplot
Perintah subplot digunakan untuk menggambar lebih dari 1 grafik dalam 1 plot. Dalam MATLAB, perintah ini ditulis subplot (mnp). Elemen m dan n menunjukkan banyaknya baris dan kolom dalam ruang plot, sedangkan p menunjukkan posisi dalam ruang plot. Cara termudah untuk memahami posisi dalam ruang plot adalah menganggapnya sebagai elemen matriks Aij. Misal, diketahui 4 buah fungsi, yaitu:
•
•
•
•
Fungsi-fungsi ini terdiri atas 4 buah. Jadi, harus di-plot dalam ruang 2 x 2 dengan perintah dasar subplot (22p). Posisi masing-masing subplot adalah p, dengan p=l, 2, 3, 4. Setiap posisi p terletak pada elemen-elemen matriks secara berturut-turut dari baris 1 kolom 1 ke kolom berikutnya, dilanjutkan dengan baris berikutnya dengan urutan yang sama dimulai pada baris 1.
Fungsi-fungsi yi (i =1,2,3,4) pads kasus ini, mempunyai posisi: p=1: A11; p=2: A12 ; p=3: A21 ; p=4: A22.
%Program dengan subplot
%By: NAMA ANDA
clear;
x=0:0.01:10
yl.x+10*ones(l,length(x))
Y2=x.'2+x+10*ones(l,length(x))
Y3=x.'3+x.'2+x+10*ones(l,length(x))
y4‐x.'4+x.'3 +X.A 2+x+10*ones(l,length(x))
%Grafik yl subplot(221) plot(x,yl);grid;
title('Grafik fungsi linear') xlabel(IxI);Ylabel(Ix+101)
%Grafik y2 subplot(222) plot(x,y2);grid;
title('Grafik fungsi kuadrat')
xlabel(lxl);ylabel (,XA 2+x+101)
%Grafik y3 subplot(223) plot(x,y3);grid;
title('Grafik fungsi pangkat 3') xlabel(lxl);Ylabel(lx'3+x'2+x+101)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 51
%Grafiky4
subplot(224) plot(x,y4);grid;
title('Grafik fungsi pangkat 4') xlabel('x');ylabel('x'4+x.^3+x^2+x+101)
Dengan menjalankan program tersebut, akan diperoleh 1 grafik dalam 1 Figure Window seperti pada Gambar dibawah:
Gambar 7.4 Contoh Sub Grafik
7.5 Menggambar Grafik Tiga Dimensi
Bagian sebelumnya dalam bab ini, menguraikan cara menggambar grafik 2 dimensi. Selain graft 2-dimensi dikenal pula graft 3-dimensi. Syarat utama untuk menggambar grafik 3-dimensi adalah array yang terdiri atas 3 pasangan data dengan panjang yang sama. Berikut ini akan diuraikan beberapa syntax dasar untuk menggambar grafik 3--dimensi, yaitu:
• plot (x, y, z) : menggambar grafik yang merupakan pasangan array data pada vektor x, y dan z.
• plot (x, y, z, S) : menggambar grafik yang merupakan pasangan array data pada vektor x, y dan z, serta menggunakan karakter s.
• plot (X,Y,Z) : menggambar grafik yang merupakan pasangan array data berupa
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 52
kolom pada matriks X, Ydan Z.
• plot (X,Y,Z,S): menggambar grafik yang merupakan pasangan array data berupa kolom pada matriks X, Ydan Z, serta menggunakan karakter S.
Karakter s adalah warna, tipe titik data dan tipe garis penghubung data. Uraian selengkapnya tentang karakter s diperlihatkan pada Tabel 7.1.
7.5.1 Grafik garis tiga dimensi
Grafik gari 3 dimensi merupakan pengembangan perintah dasar plot, dari 2-satuan data menjadi 3-satuan data. Program berikut akan menghasilka grafik seperti gambar 5.5
clear
t=0:pi/50:10*pi;
x=sin(t);
y=cos(t);
plot3(x,y,t);
title(‘GRAFIK HELIX’,’fontsize’,20,’fontname’,’Arial’);
xlabel(‘sin(t)’,’fontsize’,16,’fontname’,’Arial’);
ylabel(‘cos(t)’,’fontsize’,16,’fontname’,’Arial’)
xlabel(‘t’,’fontsize’,16,’fontname’,’Arial’)
Gambar 7.5 Contoh Grafik Helix
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 53
7.5.2 Grafik jala dan permukaan
Grafik jala merupakan koordinat z dari sebuah titik diatas grid segiempat pada bidang x-y yang menyerupai jala. Grafik jala dihasilkan dengan syntax mesh (z). Array data yang divisualisasikan adalah vector x berukuran n, vector y berukuran m dan matriks z berukuran m x n. Titik data yang tergambar merupakan pasangan {x(i),y(j),z(i,j)}, dengan x berhubungan dengan kolom-kolom z dan y berhubungan dengan baris-baris z. Sebagai contoh, program berikut akan menghasilkan grafik seperti pada Gambar 5.6
x=‐1:.1:2;
y=0:.1:5;
for i=1:length(x)
for j=1: length (y)
Z(i,j)=sin (x(i)*y(j))+cos(‐x(i)*y(j))+10;
end
end
surf(x,y,Z)
mesh(Z)
xlabel (‘x’,’fontsize’,14,’fontname’,’Arial’);
ylabel (‘y’,’fontsize’,14,’fontname’,’Arial’)
zlabel (‘z=sin(xy)+cos(‐xy)+10’)
Gambar 7.6 Grafik permukaan hasil surf(Z)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 54
SOAL:
1. Lakukan modifikasi terhadap program pada tutorial nomor 1, kemudian buat program untuk menggambarkan fungsi sinus, cosinus, tangen dan cotangen untuk kasus 2 periode dalam 1 Figure Window.
2. Spektroskopi nuklir merupakan instrumen yang berfungsi untuk mengetahui karakteristik spektrum energi radiasi. Pengaruh energi yang dipancarkan nuklida radioaktif terhadap tegangan keluaran sistem spektroskopi nuklir diketahui melalui tinggi pulsa yang tampak pada osiloskop. Misal, diketahui data pengamatan seperti pada Tabel 5.2, sedangkan data energi pada Tabel 5.2 merupakan standar kalibrasi dari Laboratory Education and Training, National Atomic Energy Agency-From JRIA Book. Perkiraan kesetaraan energi disesuaikan dengan kecenderungan bahwa pulsa tertinggi pada osiloskop sama dengan tingkat energi tertinggi. Pengamatan selanjutnya dilakukan pada unsur yang belum diketahui (Tabel 5.3). Besaran yang diamarti adalah energi yang dipancarkan nuklida akibat perubahan tegangan keluaran sistem spektroskopi nuklir. Perkiraan kesetaraan ditentukan berdasarkan posisi puncak energi pada display layer terhadap tegangan yang terbaca pada osiloskop. Jika diketahui data pengamatan seperti Tabel 5.3, buatlah grafik hubungan antara besar energi nuklida radioaktif terhadap tegangan listrik yang ditimbulkan (Tabel 5.2) dan hubungan antara tegangan terhadap energi radiasi (Tabel 5.3). Gunakan perintah stem (X, Y) untuk menggambar kedua grafik tersebut. Gambarlah kedua grafik dalam 1 figure window dengan bantuan perintah hold on untuk menampilkan array data dalam 1 grafik. Lakukan analisis lebih lanjut untuk menentukan unsur yang belum diketahui (unknown). Tebaklah unsur apakah yang sedang diamati?. (Petunjuk: Gunakan X:Tegangan dan Y. Energi.!)
Tabel 5.2: Pengaruh energi terhadap tegangan
No
Nuklida
Energi (keV)
Tegangan (Volt)
1
Ba-133
302
1,8
2
Cs-137
662
3,6
3
Na-22
1275
5,8
4
Co-60
1332
6,0
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 55
Tabel 5.3: Pengaruh Tegangan terhadap energy radiasi
No
Tegangan (Volt)
Energi (keV)
1
1,0
25
2
1,5
49
3
2,0
214
4
2,5
276
5
3,0
340
6
3,5
390
7
4
457
8
5
571
9
6
679
10
7
819
11
8
911
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 56
8.1 Akar persamaan
Akar-akar persamaan adalah bilangan yang merepresentasikan titik potong kurva polinomial terhadap variabel bebasnya. Pada bagian ini akan diuraikan beberapa metode penentuan akar-akar persamaan. Polinomial berderajat dua atau biasa disebut persamaan kuadrat dinyatakan dalam bentuk
y = ax2+bx+c ................................................................(8.1)
Akar-akar persamaan (4.1) dapat ditentukan secara analitik dengan formula ……………………………………………..(8.2)
sedangkan persamaan dengan derajat lebih tinggi, akar-akarnya tidak dapat ditentukan dengan persamaan (4.2), misalnya:
Persamaan-persamaan tersebut hanya bisa diselesaikan dengan metode numerik. Metode ini merupakan cara penyelesaian dengan teknik perkiraan tertentu sampai diperoleh hasil yang mendekati penyelesaian eksak. Penyelesaian numerik diselesaikan dengan pendekatan berurutan (iterasi) sedemikian hingga hasil yang diperoleh pada setiap step lebih teliti dari sebelumnya. Dengan melakukan sejumlah prosedur iterasi yang dianggap cukup, akan didapat hasil perkiraan yang mendekati nilai eksak dengan toleransi kesalahan yang diperkenankan.
Metode paling sederhana untuk mendapatkan penyelesaiaan perkiraan adalah dengan menggambarkan fungsi f(x) kemudian menentukan titik potongnya terhadap sumbu x. Titik
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 57
potong tersebut menunjukan akar persamaan dari fungsi yang digambarkan (Gambar 4.1). Metode lain yang lebih sederhana untuk menyelesaikan persamaan kuadrat adalah metode coba banding. Prosedur metode ini adalah mencoba nilai x sebarang, kemudian dievaluasi apakah f(x) = 0. Jika nilai x tidak sama dengan nol, maka dicoba dengan nilai yang lain sedemikian hingga diperoleh nilai f(x) = 0. Nilai yang membuat f(x) = 0 merupakan akar persamaan. Kedua cara sederhana yang diuraikan sepintas tidak efisien dan sistematis. Ada beberapa metode yang juga merupakan perkiraan, tetapi lebih sistematis untuk menghitung akar-akar persamaan. Metode-metode tersebut akan diuraikan pada bagian-bagian berikutnya dalam bab ini.
Gambar 8.1: Akar persamaan dari fungsi f(x)
8.2 Metode Setengah Interval
Metode setengah interval biasa disebut metode bagi dua atau metode bisection. Prosedur yang dilakukan untuk menyelesaikan persamaan dengan metode setengah interval adalah:
1. Menghitung fungsi pada interval yang sama dari x sampai diperoleh perubahan tanda untuk fungsi f(x) dan , yaitu x (xn+1) < 0.
2. Melakukan estimasi pertama terhadap akar x, yang dihitung dengan formula …………………………………………………………………….(8.3)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 58
3. Membuat evaluasi untuk menentukan sub interval (Gambar 4.2) tempat akar persamaan berada dengan kriteria:
• Jika f(x) x f(xn+1) < 0, akar persamaan berada pada sub interval pertama,
jadi xn+1=xt → hitungan dilanjutkan pada langkah ke-4.
• Jika f(x) x f(xn+1) < 0, akar persamaan berada pada sub interval kedua,
jadi xn =xt → hitungan dilanjutkan pada langkah ke-4.
• Jika f(x) x f(xn+1) < 0, akar persamaan adalah xt → hitungan selesai.
4. Menghitung perkiraan akar baru dengan formula1 …………………………………………………………….(8.4)
5. Jika perkiraan akar baru cukup kecil atau sesuai dengan target awal dalam batasan yang dapat diterima, hitungan dianggap selesai dengan x, adalah akar persamaan. Jika perkiraan belum kecil, hitungan diulang dari langkah ke-3 sampai diperoleh hasil yang sesuai dengan target awal.
Prosedur hitungan dalam bentuk graft dan flow chart diperlihatkan pada Gambar 6.2 dan Gambar 6.3.
Gambar 8.2: Prosedur hitungan metode setengah interval
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 59
Gambar 8.3: Bagan alir metode setengahn interval
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 60
Contoh 1:
Hitung salah satu akar persamaan polynomial orde 3 berikut.
Penyelesaian:
Akar-akar Persamaan ini dihitung dengan prosedur berikut:
1. Menghitung fungsi pada interval awal, misal x1 =1 dan x2 = 2, sehingga diperoleh:
• f(x)=(1)3 +(1)2-3(l)-3=-4
• f (x2) = (2)3 + (2)2 — 3(2) — 3 = 3
Karena fungsi f(x) kontinu, berarti perubahan tanda antara x1 dan x2 pada fungsi tersebut akan memotong sumbu x paling tidak 1 kali.
2. Menghitung estimasi sub interval pertama, yaitu:
•
• f(x3) = (1,5)3 + (1,5) 2 + 3(1,5) – 3 = 0,18750
3. Menentukan sub interval berikutnya dengan memilih salah satu titik awal yang berbeda tanda dengan f(x3 ). Jadi f(x4) adalah adalah sub interval antara f(x3 ) dan f(x4) (Gambar 4.2).
4. Menghitung fungsi pada interval (x3) dan (x2)' yaitu:
•
• f(x4) = (1,75)3 + (1,75)2 — 3(1,75) — 3 = 0,1719
5. Hitungan diulangi dari point 3 dengan sub interval yang semakin rapat.
Step 1 sampai 5 disebut 1 iterasi. Prosedur perhitungan yang telah dilakukan dengan hasil f(x4) = 0,1719 disebut iterasi pertama. Dari prosedur ini terlihat bahwa nilai f(x4) belum kecil atau belum mendekati nol. Nilai seperti ini dalam perhitungan dengan metode setengah interval dianggap belum merepresentasikan akar persamaan, sehingga perlu dilakukan perhitungan lebih lanjut berdasarkan bagan alir pada Gambar 8.3. Hasil perhitungan yang diperoleh pada prosedur tersebut diperlihatkan pada Tabel 8.1. Prosedur perhitungan ini sangat mudah dilakukan tetapi tidak efisien, karena membutuhkan iterasi yang cukup panjang.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 61
Tabel 8.1 Prosedur Perhitungan
8.3 Metode Regulasi Falsi
Metode regulasi falsi boleh diartikan metode posisi palsu karena metode ini memberikan posisi palsu akar w berdasarkan titik perpotongan garis lurus yang melalui (x1,f(x1)) dan (x2,f(x2)) dengan tanda yang berbeda dan kontinu. Dari titik tersebut dapat dilakukan interpolasi linear, sehingga metode ini juga sering disebut metode interpolasi linear. Dengan metode ini akar-akar persamaan fungsi yang ditinjau lebih cepat diperoleh tanpa iterasi yang cukup panjang. Metode ini lebih efektif jika dibandingkan dengan metode setengah interval.
Perhitungan akar-akar persamaan dengan metode regulasi falsi dilakukan dengan prosedur berikut:
1. Menentukan fungsi pada interval x yang sama sampai diperoleh perubahan tanda dari fungsi f(x) dan f(xn+1) atau f(x)x(xn+1)<0 (Gambar 8.4).
2. Dari kedua nilai fungsi f(x) dan f(xn+1) ditarik garis lurus sehingga terbentuk segitiga sebangun yang memenuhi Persamaan (8.5) dan (8.6).
.………………………………………(8.5)
………………………….(8.6)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 62
Jadi langkah ke-2 adalah menentukan w menggunakan persamaan (8.6) dan nilai fungsi f (w).
3. Melakukan evaluasi terhadap fungsi f (w) dan f (xn+1 ) untuk menentukan sub interval tempat w berada (Gambar 6.4) dengan kriteria:
• jika f (w) x f (xn+1 ) < 0, akar persamaan berada pada sub interval pertama, jadi xn+1 = w → hitungan dilanjutkan pada langkah ke-4.
• jika f(w) x f(xn+1) > 0, akar persamaan berada pada sub interval kedua, jadi xn = w → hitungan dilanjutkan pada langkah ke-4.
• jika f (x) x (xn+1 )= 0, akar persamaan adalah w → hitungan selesai.
4. Melakukan interpolasi baru menggunakan persamaan:
…………………………(8.7)
5. Jika f(w*) cukup kecil atau f (w*)≈ 0 perhitungan dinyatakan selesai dengan w* adalah akar persamaan. Jika f(w*) belum kecil, perhitungan diulangi dari langkah ke -3.
Gambar 8.4. Prosedur hitungan metode regulasi falsi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 63
Gambar 8.5. Bagan alir metode regulasi falsi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 64
Contoh 2:
Hitung akar dari persamaan seperti pada Contoh 1, yaitu
f(x) = x3 + x2- 3x - 3 = 0
Penyelesaian:
Prosedur berikut adalah penyelesaian dengan metode regulasi falsi.
1. Menghitung fungsi pada interval awal, misal x1 =1 dan x2 = 2, sehingga diperoleh:
• f(x1)=(1)3 + (1)2 – 3(1) – 3 = 4
• f(x2)=(2)3+(2)2-3(2)-3=3
Karena fungsi f(x) kontinu, berarti perubahan tanda dari fungsi antara x1 dan x2 akan memotong sumbu x paling tidak satu kali.
2. Menghitung estimasi posisi palsu pertama, yaitu:
•
• f(w1)=(1,57142)3 + (1,57142)2 -3(1,57142)-3 = -1,36449
3. Menentukan posisi palsu berikutnya dengan memilih salah satu titik awal yang berbeda tanda dengan f(wl). Jadi, f(w2) adalah posisi palsu antara f (w1) dan f(x2) (Gambar 6.5).
4. Menghitung fungsi pada interval (w2 ) dan (x2 ), yaitu:
•
4. f(x4) = (1,75)3 + (1,75)2 - 3(1,75) - 3 = 0,1719
5. Hitungan diulangi dari point 3 dengan sub interval yang semakin rapat.
Seperti metode sebelumnya step 1 sampai 5 disebut iterasi pertama. Hasil perhitungan pada iterasi berikutnya diperlihatkan pada Tabel 8.2.
Tabel 8.2: Hasil hitungan metode regulasi falsi
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 65
.4 Metode Iterasi
ah metode perkiraan akar persamaan dengan menggunakan hasil
pers Dengan memberikan
g(xn) …………………………………………… (8.13)
Besarn
Bagan alir metode iterasi diperlihatkan pads Gambar dibawah:
8
Metode iterasi adal
transformasi dari persamaan itu sendiri. Misal sebuah fungsi f(x) = 0 ditransformasikan dengan menambahkan variabel bebas dad fungsi itu sendiri. Misal, variabel x ditambahkan pads fungsi g(x) sehingga diperoleh persamaan barn dengan bentuk umum X = g(x) .......................................................................................... (8.12)
amaan (8.12) menunjukan bahwa nilai x merupakan fungsi dari x .
nilai perkiraan awal yaitu x„ , perkiraan akar selanjutnya yaitu x,,., dapat dihitung dengan rumus iterasi x n+1=
ya kesalahan (error) dihitung dengan formula
……..……………………………..(8.14)
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 66
Penentuan akar-akar p akukan dengan prosedur
beri
ntukan fungsi x. = g(x„
enggunakan persamaan (4.14) dengan kdteria:
adalah
• perhitungan diulangi dari langkah ke-2 dengan perkiraan barn,
4. Melakukan identifikasi terhadap fungsi dengan kriteria:
fungsi yang ditinjau disebut
• kin besar pada iterasi berikutnya, maka fungsi yang ditinjau disebut
Contoh
h sebelumnya digunakan fungsi yang sama untuk membandingkan hasil yang
x' – 3x – 3 = 0
Pe
tukan fungsi x. g(x, ), yaitu:
•
Meng fungsi x,,, =9(x,,), yaitu :
3. la kan nakan persamaan (6.14):
ersamaan menggunakan metode iterasi dil
kut: 1. Mene
2. Menghitung fungsi x,,, = 9(x„
3. Melakukan estimasi kesalahan m
• jika c. sangat kecil (e. 0) dengan x„ -- 0, perhitungan selesai dan x,
akar persamaan. jika tidak, maka
yaitu x,* = g * (x,,,,) -
• jika c,, semakin kecil pada iterasi berikutnya, maka
konvergen. jika c, sema
diverges. :
Pada conto
diperoleh pada metode sebelumnya. Dalam contoh ini juga akan digunakan fungsi yang sama, yaitu: Ax) = x 3 +
nyelesaian:
Cara-1
1. Menen
x, X2 +3x+3
• X, =2
2.hitung
• X2 (2)2 +3(2)+3)3 = 1,70998
Meku estimasi kesalahan menggu
11,70998-21 X 100% =16,9607% 70"S
na co sangat besar, maka dilanjutkan pada iterasi berikutnya de
hitungan seperti pada Tabel 6.5.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 67
entifikasi terhadap fungsi f (x) menunjukan bahwa --,, semakin kecil, maka fungsi yang
tukan fungsi x. = g(x, ), yaitu:
Id
ditinjau disebut konvergen. Cara-2
1. Menen
• X+X2 _ 3
3
X, =2
2. ghitung f
X2 - (2)'+(2y-3 - 3 3
ekukan estimasi kesalah
33,3333% na c,, sanga
hitungan seperti pada Tabel 6.6. ntifikasi terhadap fungsi f (x) me
yang ditinjau disebut divergen.
T
c
ang efektif karena dibutuhkan fungsi, nilai awal dan persentase kesalahan yang belum tentu valid. Tetapi metode ini mampu mengidentifikasi suatu fungsi konvergen atau divergen.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 68
SOAL:
. Buat program untuk menghitung akar-akar persamaan berikut, dengan metode
gah interval.
2. Buat program untuk menghitung akar-akar persamaan berikut, dengan metode Regulasi
F
3. program untuk menghitung akar-akar persamaan berikut, dengan metode Iterasi.
1
seten
f W = x, + 2x' — 5x – 5 = 0
alsi
f W = x, + 2x' — 5x – 5 = 0 Buat
f W = x, + 2x' — 5x – 5 = 0
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 69
Fungsi Dalam M-File
Pada dasarnya semua to
dan dikelompokkan dalam folder-folder toolbox. Selain menggunakan fungsi-fungsi yang telah disediakan oleh MATLAB, kita juga dapat membuat fungsi-fungsi sendiri sesuai kebutuhan. Keuntungan
digunakan kembali pada program yang lain. Untuk membangun sebuah fungsi, MATLAB memberikan kita satu pola penulisan untuk diikuti. Yaitu sebagai berikut: Bagian 1 → Function [out1, out2,..] = Nama(un1,in2,..) Bagian 2 → % Penjelasan fungsi
Bagian 3 → ‐‐‐Statement fungsi‐‐‐
‐‐‐Statement fungsi‐‐
da 3 bagian pokok dalam penuli
1. Bagian deklarasi fungsi
2. Bagian penjelasan fungsi
3. Bagian program utama
Dari ketiga bagian tersebut
juga tidak. Variabel out
input dan output yang dapat digunakan untuk fungsi tidak terbatas. Nah, untuk memperjelas cara pembuatannya, mari kita kerjakan lati
1. Pada command Window, ketikkan:
>>edit
Tekan
dibawah berikut: function y=fungsiku% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
% Program latihn 16
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 70
% MATLAB Pogramming
% Oleh : gunay
%
% Fungsi y=x^3+
%
% Cara menggunakan:
% y
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Y=x.^3+12*x.^2‐15*x
Setelah selesai mengetik program diatas, an
dengan nama fungsiku.m. Perhatikan secara default MATLAB akan menyimpannama file anda sama dengan nama fungsinya. Pastikan direktori penyimpanan file anda sudah
direktori MATLAB (lihat bab 2 Penting Untuk Pemula). Untuk menggunakan fungsi yang telah dibuat ketiklah sebagai berikut: >> y=fungsiku(12)
Tekan enter, selan
berikut: >>y=fungsy =
3310
Fun
sebagai berikut: >> help fungsiku ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Program latiha
MATLAB Programming
Oleh: Gunay
Fungsi y=x^3+
Cara menggunakan:
Y=fun
Selesai
argument input dan output tunggal. Nah, untuk lebih memahami program fungsi denganjumlah argument yang lebih dari satu, mari kita kerjakan latihan berikut: 1. Pada Command Window, ketikkan:
>>edit
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 71
2. enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program
isi]=balok(p,1,t)
Tekan
dibawah ini: function [luas,
% Program latihan 17
%MATLAB Programming
% Oleh: Gunay
%
% Menghitung luas
% L
% Isi = plt
% Cara menggunakan :
% [luas,isi]
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Luas= 2*p.*1+2*p.*t+2*1.*t;
Isi = p.*1.*t;
Setelah selesai mengetik pro
dengan nama balok.m. Perhatikan secara detail MATLAB akan menyimpan namfile anda sama dengan nama fungsinya. Buatlah sebuah fungsi lagi dan ketiklah p
Function [luas,isi]=silinder (jari,tinggi)
% Program latihan 17
% MATLAB Programming
% Oleh Gunay
%
% menghitung
% lu
% Isi = pi x r^ 2 x t;
%
% Cara menggunaka
% [luas,isi]=silinder
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Luas= (2*pi*jari*tinggi) + 2*(pi*
Isi= pi*jari^2*tinggi;
Setelah selesai mengetik program diatas, anda simpan di direktori
dengan nama silinder.m. Perhatikan secara default MATLAB akan menyimpan nama file anda sama dengan nama fungsinya. Selesai
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 72
Untuk mengilustrasikan cara menggunakan fungsi yang telah kita buat pada sebuah program yang utuh, kerjakanlah latihan berikut ini.
1. Pada command Window, ketikkan: >>edit
2. Tekan enter, selanjutnya muncul MA
dibawa
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ % Program latihan 18 % MATLAB Program
% Oleh: Gunay
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
clear all;
clc;
disp (‘ ‐‐‐‐
disp
d
disp (‘Pilihan Rumus Perhitun
disp (‘1.Kotak’);
d
disp (‘ ‘);
Pilih=input (‘pilihan
Switch pili
C
disp (‘Hitung Luas dan Isi Kota
disp (‘
pjg
lbr=input(‘lebar kotak=’);
tg=input(‘tinggi kotak=’);
[luas,isi]=balok(pjg,lbr,tg);
disp([‘luas kotak= ‘ num2s
disp([‘volume kotak=’num
Case2
disp (‘Hitung Luas dan Isi Silinder’);
disp (‘ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‘);
tg=input(‘tinggi silinder=’);
[luas,isi]=silinder(r,tg);
disp([‘luas silinder= ‘ num2str
disp([‘volume silinder=’num
otherwise
disp (pilihan anda ngawuur !!!!’)
end;
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 73
3. esai mengetik program diatas, anda simpan di direktori c:/latihanku,
2 Penting Untuk Pemula). Lalu ketiklah nama file
Setelah sel
dengan nama latihan18.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencariandirektori MATLAB (lihat bab
latihan18 tanpa ekstensi: >> latihan18 Tekan enter, selanjutnya p
yang sesuai s
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Program latihan18 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Pilihan Rumus Perhitun
1. Kotak
2. Silinder
pilihan and
hitung luas d
‐‐ ‐
jari‐jari silinder =12
tinggi silinder =12
luas silinder = 1809.5574
volume silinder =542
>>
Selesai
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 74
10.1 Graphic User Interface (GUI)
Bagi anda yang sudah Delphi, istilah
asing lagi. GUI pada dasarnya adal
pengganti perintah teks untuk user berinteraksi. Pada bab-bab sebelumnya, program yang kita buat masih menggunakan perintah teks untuk berinteraksi. 10.1.1 Komponen
Untuk keperluan pem
komponen standar, seperti pushlain untuk kita gunakan. Tetapi
komponen tersebut dengan benar, kita harus memahami konsep Pemrograman Berbasis Objek (PBO) di MATLAB dengan benar. Pada PBO, setiap komponen di artikan sebagai objek yang dapat diberikanpekerjaan maupun melakukan pekerjaan tertentu. Selain itu setiap objek dalam
PBO pasti memiliki 68roperty untuk berinteraksi dengan objek lainnya. Dalam konteks pemrograman MATLAB sendiri, setiap objek tersebut memiliki hirarki objek yang dijabarkan dalam konsep parent-children. Berikut adalah diagramnya :
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 75
Gambar 10.1 Konsep Parent Children
Maksud dari diagram tersebut adalah setiap objek yang digunakan harus diposisikan pada objek parent-nya. Misalnya pushbutton harus diletakkan pada objek figure sebagai parent-nya.Seandainya anda masih bingung, tidak masalah kok. Nanti saat kita mulai menuliskannya dalam skrip pasti anda akan paham.
Objek paling tinggi dalam hirarki MATLAB adalah Screen, tetapi objek ini bertipe abstrak, dan pemrograman MATLAB tidak dapat langsung menyentuhnya. Maka objek tertinggi dalam pemrograman MATLAB kita fokuskan pada objek figure. Sintak umum menggunakan objek dalam pemrograman MATLAB adalah sebagai berikut :
ObjHandle = objek ([Property objek],[Property Value]);
Tentang objek-objek apa saja yang dapat kita gunakan akan dibahas setelah ini. Tetapi khusus untuk properti objek, sengaja tidak panjang lebar kita perbincangkan, karena jumlahnya yang banyak dan kesulitan penulis untuk mendeskripsikan satu persatu. Menurut penulis, lebih baik kita lihat saja hasil dari penggunaan setiap properti objek tersebut. Sehingga anda dapat mendefinisikannya dalam bahasa yang lebih mudah anda mengerti.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 76
Pada umumnya objek yang paling sering digunakan dalam pemrograman MATLAB adalah sebagai berikut :
Obiek Figure
Figure adalah objek tertinggi yang dapat kita gunakan dalam -pemrograman Window. Objek ini dapat diakses dengan beberapa properti penting menggunakan sintak sebagai berikut :
Nama = figure(...
`Color',[R G B],
`MenuBar',< ‘figure'│'None'>,
‘Units’,<’points’│'pixe1'>,
'Position',[Left Top Width Height],
‘Resize’,<’on’│’off’>, ...
'NumberTitle', <'on'│'off'>,
'Name',[Teks Window], ...
`WindowStyle',<'normal'│'modal'>);
Contoh potongan skrip pemakaiannya adalah sebagai berikut :
winl=figure( ...
'units' 'points',...
'position',[100 150 500 300],...
'color',[.8 .8 .9],...
'menubar','none',...
‘resize’,’off, ....
‘numbertitle’,’off’ ....
'name','Latihan Window Programming');
Hasil eksekusi program akan seperti berikut
Objek Uicontrol
Objek Uicontrol adalah objek yang paling kita butuhkan untuk berinteraksi dengan program. Uicontrol berisi komponen-komponen yang kita butuhkan untuk mendisain form untuk media interaksi. Objek ini dapat
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 77
diakses dengan beberapa properti penting menggunakan sintak sebagai berikut :
Nama = uicontrol( ...
'Parent',[NamaFigure],
'Style',[Komponen], ...
'Units',<’points’│’pixel’>,
'ListboxTop',0, ...
'Position',[Left Top Width Height],
'String’,[Text pada Object],...
‘Callback',[MATLAB Skrip]);
Dimulai dari sini, untuk seterusnya pada setiap penulisan objek yang barn kita harus mendefinisikan objek parent dari objek tersebut. Berikut adalah cuplikan skrip yang menggunakan uicontrol.
edit1=uicontro1(IparentI,win1 ....
‘units’,’points' ....
'position',[110 140 100 15],...
‘backgroundcolor’,[l 1 1],...
‘style’,'Pushbutton' ....
'string','Exit',...
'fontname','arial',...
'fontsize',10,...
`Callback','Close');
perhatikan properti 'Parent' yang diarahkan pada objek bernama ‘winl’ (penulisan nama objek tanpa tanda petik). Artinya objek anda yang bernama 'edit1' diletakkan pada objek 'winl'.
Lalu perhatikan pula properti 'Style', nilai yang dituliskan pada properti ini adalah nama-nama komponen yang disediakan didalam objek uicontrol. Berikut ini adalah tabel nama-nama komponen yang dapat kita gunakan, berikut skripnya:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 78
Tabel 10.1 Tabel Unicontrol
Obiek Uimenu
Objek uimenu pada dasarnya mirip dengan uicontrol khususnya pada komponen pushbutton. Kalau anda melihat pada aplikasi-aplikasi Window, dipojok kiri atas selalu ada daftar menu yang dapat digunakan dengan cara meng-klik pada menu yang disorot. Nah uimenu digunakan untuk membuat daftar menu seperti itu. Berikut ini adalah sintak umumnya dalam pemrograman MATLAB:
nama=uimenu('parent',[NamaFigure],...
'Label',[Teks Menu],...
`Callback',[MATLAB Skrip]);
Berikut ini adalah contoh potongan skrip yang digunakan dalam
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 79
pemrogramannya :
menu1=uimenu(‘parent’,win1 ....
'Label','Program');
menull=uimenu('parent',menul,...
'Label,'Kalkulator’,…
'Callback','latihan23');
Dan hasil saat dieksekusi adalah daftar menu seperti berikut :
Obiek Axes
Objek axes dalam pemrograman MATLAB sangat penting untuk melakukan visualisasi data. Tanpa menggunakan objek axes, kita tidak dapat menampilkan hasil eksekusi fungsi plot, mesh, contour dan lain-lain, karena objek axes adalah medianya. Sintak umum menggunakan objek axes adalah sebagai berikut :
nama=axes('parent',[objek parent],...
‘units’,<’points’│’pixel'>,...
'position',[Left Top Width Height],...
‘xgrid’,<’on’│’off'> ....
‘ygrid', <’on'│’off’> ....
'xcolor',[R G B],...
'ycolor', [R G B],...
'fontsize',[numerik],...
'color', [R G B]);
Berikut adalah potongan program yang menggunakan skrip axes :
grafikl=axes('parent',winl,...
'units’,’points’,..
'position',[250 80 240 180],...
'xgrid','on',...
'ygrid','on',...
'xcolor',[0.4 0 .15],...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 80
'ycolor',[0.4 0 .15],...
'fontsize',8,...
'color',[1 1 1]);
Properti Callback Sebagai Media Interaksi
Agar objek-objek yang kita buat dapat digunakan untuk mengerjakan perintah-perintah pemrograman sebagaimana mestinya, ada media yang disediakan disetiap objek untuk itu. Medianya adalah melalui properti callback. Dimana nilai properti callback akan dieksekusi sebagai program Matlab ketika objek pemiliknya dikenai sesuatu (pada pushbutton misalnya diklik). Pada properti callback ini kita buatkan skrip MATLAB sebagaimana biasa (skrip MATLAB) atau kita tuliskan nama file MATLAB yang akan dijalankan. Mengetahui fungsi callback adalah kunci pertama pemrograman Window menggunakan MATLAB.
Berikut adalah cuplikan contoh skrip untuk callback :
editl=uicontrol('parent',winl,...
'units' 'points',...
'position',[110 140 100 15],...
'backgroundcolor',[1 1 1],...
'style','Pushbutton',... ‘string’,'Exit',...
'fontname','arial',...
‘fontsize',10 ....
‘Callback', ['x [0:10:180];',...
'y sin(x*pi/180);',...
'p1ot(x,y,''-r'')'l);
Bentuk lainnya, adalah sebagai berikut :
Menu14=uimenu('parent',menul,...
'Labe1','Tes',...
'Callback','latihan20');
Pada contoh terakhir, 'latihan20' adalah nama file MATLAB, perhatikan cara penulisannya tidak boleh dengan ekstensinya (latihan20.m).
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 81
Interaksi Antar Obiek Visual (Fungsi Get dan Set)
Mengambil nilai properti dari satu objek dan menggunakannya untuk mengisi nilai properti pada objek lain, itulah hakekat pemrograman Window.
Mengetahui metoda Interaksi antar objek visual dalam pemrograman MATLAB adalah kunci kedua untuk pemrograman Window. MATLAB menyediakan dua buah fungsi untuk itu, yaitu get dan set. Bayangkan, kita memiliki 3 buah objek edit sebagai berikut :
Kita memberikan input angka pada editl dan edit2, kemudian angka tersebut dijumlahkan dan hasilnya dimunculkan ke edit3.
Fungsi get kita gunakan untuk mengambil nilai properti dari suatu objek. Fungsi ini dapat dipadukan dengan fungsi konversi string ke numeric atau sebaliknya, sesuai kebutuhan pengolahan datanya. Sintak dasarnya adalah sebagai berikut :
X=get([NamaObjek],[Property]);
Maka skrip untuk mengambil input dari editl dan edit2 adalah
a=str2num(get(editl,'String')); b=str2num(get(edit2,'String'));
c=a+b;
Sedangkan fungsi set kita gunakan untuk memberikan suatu nilai pada properti objek tertentu. Fungsi ini juga dapat dipadukan dengan fungsi konversi sebagai mana fungsi get. Sintak dasarnya adalah sebagai berikut :
set([NamaObjek],[Property],[Nilai Baru]);
Maka skrip untuk menampilkan output pengolahan kita ke edit3 adalah sebagai berikut :
set(edit3,'String',num2str(c));
Sekarang kita sudah mendapatkan cara penulisan dan konsep-konsep untuk membangun aplikasi Window dengan menggunakan MATLAB. Tiba
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 82
saatnya kita lanjutkan untuk menggunakan skrip-skrip tersebut dalam satu program yang utuh.
Tutorial #1 : Program Kalkulator Sederhana
Program latihan pertama kita adalah membuat Program Kalkulator Sederhana. Untuk membuat program ini, kita rencanakan beberapa tahap.
Gambar 10.2 Contoh pembuatan layout form
Dua : Membuat Program MATLAB dalam 5 bush file terpisah seperti pada
diagram
Kita mulai dengan membuat file pertama (Graphic User Interface). ikuti langkah-langkah berikut ini.
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
% -------------------------------------
% Program Latihan 23
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 83
% MATLAB Window Programming
% Oleh : gunay
clear all;
cic;
winl=figure( ...
'units' 'points' ...
'position',[130 190 400 200],...
'color',[.8 .8 .91 ....
'menubar','none',...
‘resize','off' ....
'numbertitle','off',...
'name','Latihan 23 : Window Programming');
framel=uicontrol('parent',winl,...
‘units','points',...
'position',[0 0 500 60],...
'backgroundcolor',[.3 .3 .4],...
'style','Frame');
labell=uicontrol(1parent',win1 ....
‘units’,’points’,...
'position',[30 170 300 20] ....
'backgroundcolor',[.8 .8 .9],...
‘style' ,'Text’,...
‘string','Kalkulator Sederhana' ....
'fontname','arial',...
'fontsize',12,...
'fontweight','bold',...
'foregroundcolor',[0 0 0]);
label2=uicontrol('parentl,winl,...
‘units','points',...
'position',[30 140 100 15],...
'style','Text'....
'string','Data ke 1',...
'fontname','arial',...
'fontsize',10);
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 84
label3=uicontrol('parenL',winl ....
‘units',’points' ....
'position',[30 120 100 15],...
'style','Text',...
'string','Data ke 2',...
'fontname','arial',...
‘fontsize',10);
label4=uicontrol('parent',winl ....
'units' 'points' ....
'position',[30 90 100 15],...
'style','Text',...
'string','hasil Proses',...
'fontname','arial',...
'fontsize',10);
editl=uicontrol(‘parent',winl....
‘units’,'points',...
'position',[130 140 60 15],...
‘backgroundcolor',[l 1 1],...
'style','Edit',...
'string','0',...
'fontname','arial',...
'fontsize',10);
edit2=uicontrol('parent',winl,...
‘units’,’points’,...
'position',[130 120 60 15],...
'backgroundcolor',[l 1 1],...
'style','Edit',...
‘string’,’0’,...
'fontname','arial',...
'fontsize',10);
edit3=uicontrol('parent',winl,...
'units','points',...
'position',[130 90 60 15],...
'backgroundcolor’,[l 1 1],...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 85
'style' 'Edit',...
‘string',’0’ ....
'fontname','arial',...
'fontsize',10);
tomtambah=uicontrol('parent',winl...
‘units’,'points' ....
'position',[30 40 80 15],...
'style','pushbutton',...
`callback','latihan23a',...
'string','Tambah',...
‘fontname’,’arial’,...
'fontsize',10);
tomkurang=uicontrol(lparentl,winl...
'units' 'points',...
'position',[110 40 80 15],...
'style' 'pushbutton' ....
‘callback',’latihan23b’ ....
‘string’,'Kurang' ....
'fontname’,’arial’,...
'fontsize',10);
tomkali=uicontrol(‘parent',winl ....
'units' 'points' ....
'position',[190 40 80 15],...
'style','pushbutton' ....
‘callback','latihan23c',...
'string','Kali',...
‘fontname’,’arial',...
'fontsize',10);
tombagi=uicontrol(‘parent’,winl ....
'units','points',...
'position',[270 40 80 15],...
‘style’,’pushbutton' ....
‘callback’,'latihan23d',...
‘string’,'Bagi’,...
'fontname','arial',...
'fontsize',10);
tomtutup=uicontrol('parent’,winl,...
'units','points',...
'positionl,[270 20 80 15],...
'style','pushbutton',...
'string','Tutup',...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 86
'fontname','arial',...
'fontsize',10....
'callback','close');
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan23.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencarian direktori MATLAB (lihat Bab 2 Penting Untuk Pemula). Lalu ketiklah nama file latihan23 tanpa ekstensi :
»latihan23
5. Tekan Enter, selanjutnya program akan dijalankan dan menghasilkan Window seperti berikut ini :
6. Selesailah program pertama.
Nah, untuk program-program selanjutnya adalah program yang yang berisi skrip interaksi antar objek yang telah kita definisikan pada file latihan23.m. Perhatikan nama-nama objeknya.
Sekarang kita lanjutkan dengan membuat file program-program proses. Ikuti langkah-langkah berikut :
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
% ------------------------
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 87
% Program Tambah Untuk Latihan 23
% ------------------------
a=str2num(get(editl,'String'));
b=str2num(get(edit2,'String'));
c=a+b;
set(edit3,'String',num2str(c));
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan23a.m.
4. Ganti tanda '+'pada baris c=a+b menjadi
c=a-b;
5. Pilih menu Save As pada editor MATLAB, anda simpan di direktori c:/Iatihanku, dengan nama latihan23b.m.
6. Ganti lagi tanda'-' pada baris c=a-b menjadi
c=a*b;
7. Pilih menu Save As pada editor MATLAB, anda simpan di direktori c:/Iatihanku, dengan nama latihan23c.m.
8. Ganti tanda '*'pada baris c=a*b menjadi
c=a/b;
9. Pilih menu Save As pada editor MATLAB, anda simpan di direktori c:/Iatihanku, dengan nama latihan23d.m.
10. Pastikan direktori penyimpanan file anda sudah terdapat Jcaem daftar pencarian direktori MATLAB (Iihat Bab 2 Penting Pemula).
11. Selesailah pembuatan 4 program untuk proses.
Tiga : Jalankan Program Utama (latihan23.m). Selesai.
Tutorial #2 : Program Valuta Asing -> Rupiah
Program latihan kedua kita adalah membuat Program Valuta Asing -> Rupiah. Untuk membuat program ini, kita rencanakan beberapa tahap.
Satu : Membuat Layout Form dan Interaksi Program
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 88
Interaksi dengan callback diletakkan pada pushbutton1 dan pushbutton2.
Dua: Membuat Program MATLAB dalam 2 buah file terpisah seperti pada
diagram
Dari pengalaman tutorial sebelumnya, mungkin anda bisa langsung mencoba sendiri. Tapi kalau belum terbiasa, mari kita ikuti langkah-langkahnya. Berikut adalah langkah-langkah membuat file pertama (User Interface).
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
% ---------------------------
% Program Latihan 24
% MATLAB Window Programming
% Oleh : gunay
% ---------------------------
clear all;
clc;
winl=figure( ...
‘units’,’points' ....
'position',[130 190 400 200],...
'color',[.8 .8 .9],...
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 89
'menubar','none',...
'resize','off',...
'numbertitle','off',...
'name','Latihan 24 : Window Programming');
frame1=uicontrol('parent',winl ....
‘units’,’points' ....
'Position',[O 0 500 60],...
'backgroundcolor',[.3 .3 .4],...
'style','Frame');
labell=uicontrol('Parent',win1 ....
'units','points',...
'position',[30 170 300 20],...
'backgroundcolor',[.8 .8 .9],...
'style','Text',...
'string','Valuta Asing -- > Rupiah',...
‘fontname','arial',...
'fontsize',12,...
'fontweight','bold',...
'foregroundcolor',[0 0 0]);
label2=uicontrol('parent’,win1 ....
'units' 'points',...
'position',[220 140 100 15],...
'style','Text',...
'string','Mata Uang Asing',...
‘fontname’,’arial’ ....
'fontsize',10);
popupl=uicontrol('parentl,winl ....
'units','points' ....
'position',[220 130 100 10],...
'backgroundcolor',[l 1 1],...
'style','popupmenu',...
'string','US. Dollar│MLY. Ringgit│SGP
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 90
Dollar│JPN. Yen',...
'fontname','arial',...
'fontsize',10);
label2=uicontrol('parent',winl,...
'units','points',...
'position',[30 140 100 15],...
'style','Text',...
'string','Jumlah Uang',...
'fontname','arial',...
'fontsize',10);
label3=uicontrol('parent',winl ....
‘units','points',...
'position',[30 120 100 15],...
'style','Text',...
'string','Kurs',...
'fontname','arial',...
'fontsize',10);
label4=uicontrol('parent’,win1,...
'units','points',...
'position',[30 90 100 15],...
'style','Text',...
'string','Jumlah Rupiah',...
'fontname','arial',...
'fontsize',10);
editl=uicontrol('parent’,winl ...
'units','points',...
'position',[130 140 60 15],...
‘backgroundcolor’,[l 1 1],...
‘style’,'Edit' ....
'string','0',...
'fontname','arial',...
'fontsize',10);
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 91
edit2=uicontrol('parent',winl,...
'units','points',...
'position',[130 120 60 15],..
'backgroundcolor’,[1 1 1],...
'style','Edit',...
'string','0',...
'fontname','arial',...
'fontsize',10);
edit3=uicontrol('parent’,winl,...
'units',’points',...
'position',[130 90 60 15],...
'backgroundcolor',[1 1 1],...
'style','Edit' ....
'string','0',...
'fontname','arial',...
'fontsize',10);
tomhitung=uicontrol(lparent',winl ....
'units','points' ....
'position',[270 40 80 15),...
'style',’pushbutton' ....
'callback','latihan24a',...
'string','Hitung',...
'fontname','arial',...
'fontsize',10);
tomtutup=uicontrol(‘parent',winl,...
‘units’,’points',...
'position',[270 20 80 15],...
'style’,’pushbutton’ ....
‘string’,'Tutup',..
'fontname','arial',...
'fontsize',10,...
‘callback’,’close’);
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan24.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencarian direktori MATLAB (lihat Bab 2 Penting Untuk Pemula). Lalu ketiklah nama file
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 92
latihan24 tanpa ekstensi:
>>latihan24
5. Tekan Enter, selanjutnya program akan dijalankan dan menghasilkan sebagai berikut
6. Selesai pembuatan program pertama.
Kita lanjutkan dengan membuat program kedua dengan memperhatikan nama objek yang telah kita definisikan, mengikuti langkah-langkah berikut :
1. Pada Command Window, ketikkan :
>> edit
2. Tekan Enter, selanjutnya muncul MATLAB Editor dan anda ketiklah program dibawah berikut :
%-------------------------------------------------
% Program Hitung Valuta Untuk Latihan 24
% ---------------------------------------
uangl=str2num(get(editl,'String'));
pilihan = get(popupl,'Value');
switch pilihan
case 1
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 93
% US dollar
kurs=9900;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
case 2
% Mly Ringgit
kurs=1450;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
case 3
% Sgp Dollar
kurs=4600;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
case 4
% Jpn Yen
kurs=3500;
uang2=uangl*kurs;
set(edit2,'String',num2str(kurs));
set(edit3,'String',num2str(uang2));
end;
3. Setelah selesai mengetik program diatas, anda simpan di direktori c:/latihanku, dengan nama latihan24a.m.
4. Pastikan direktori penyimpanan file anda sudah terdapat didalam daftar pencarian direktori MATLAB (Iihat Bab 2 Penting Untuk Pemula).
5. Selesailah pembuatan program kedua.
Tiga : Jalankan Program Utama (latihan24.m). Selesai.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 94
11.1 Pengertian Simulink
Simulink merupakan domain simulasi dan basik disain untuk simulasi system dinamik. Simulink banyak digunakan untuk interactif graphical environment dan customizable simulasi, implement, test control, signal processing, communikasi, dan other timevarying systems.
Simulink bekerja secara pemodelan dengan menggunakan beberapa simbul-simbul yang telah disediakan pada library propram.
11.2 Ruang kerja simulik
Ruang kerja simulink terlepas dari ruang kerja matlab/command-windows matlab. Simulink memiliki ruang kerja tersendiri yang disebut dengan “Model”.
Simulink dapat dimulai melalui icon:
Gambar 11.1 Icon Simulink
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 95
11.3 Simulink Library Browsser
Setelah menekan icon simulink maka akan muncul jedela library browser yang merupakan tempat dari bagian simbul-simbul pemrograman.
Gambar 11.2 Lybrary Browser
Model dapat dibuka melalui file – new – model seperti berikut:
Gambar 11.3 Membuka Model
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 96
Model merupakan command/ruang kerja dari simulink, yakni dengan men drag/menknarik simbul-simbul pada simulink library yang diperlukan ke dalam command model. Akan tetapi disini sangat diperlukann kemahiran dalam memodelkan persamaan matematis sebelum menyusun dalam bentuk model simulasi dengan simulink. Adapun command model sebagai berikut:
Gambar 11.4 Comand Model
11.4 Tool Simulink Library Browser
Pada library browser terdapat banyak tool yang memiliki fungsi dan kegunaan yang berbeda-beda. Seperi: Math Operations, Sinks, Sources, Continous dan lain sebagainya. Untuk lebih jelasnya dapat dilihat pada demos- matlab-simulink.
Gambar 11.5 Contoh tool sources.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 97
Diatas merupakan contoh beberapa isi dari tool sources. Dimana yang paling sering digunakan adalah simbul “constant”.
Simbul ini digunakan sebagai tempat menginput nilai-nilai daripada constanta-constanta matematis.
Gambar 11.6 Contoh tool math operation
Math operations merupakan tool operasi maitematika, baik itu simbul perkalian, penjumlahan, pengurangan, pembagian, akar dan lain sebagainya.
Product merupakan simbul matematis untuk perkalian.
Sum merupakan untuk matematis untuk penjumlahan dan pengurangan.
Masih banyak simbul-simbul yang lain dalam library bworser, silakan anda pelajari lebih lanjut. Parameter-parameter dalam simbul-simbul tersebut dapat diubah dengan meng-klik kanan kemudian akan keluar command parameter. Dari command tersebut anda dapat merubah parameter-parameter sesuai yang diperlukan.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 98
Contoh:
Suatu tekanan pada dasar tangki ditentukan dengan rumusan matematis seperti:
Dimana:
P1 = tekanan pengukuran
= 721 lb/ft2 = Berat jenis air
= 62,4 lb/ft3
h = tinggi air
= 3 ft
Maka persamaan matematis tersebut dapat diselesaikan dengan simulink, sebagai berikut:
Buka simulink kemudian library browser dan command model.
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 99
Stelah itu ambillah 3 simbul constant dari sources dan ditarik ke command model dan beri nama masing-masing constans seperti dibawah:
Setelah itu kita memerlukan sun dan product untuk penjumlahan dan perkalian konstanta (ambil di tool math operation), ambil pula simbul display untuk memunculkan nilai P2 (ambil pada tool sink):
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 100
Ganti parameter constant sesui dengan soal:
Misalnya:
El
Setelah muncul source blok parameter diatas, ganti nilai parameternya sesuai nama constant yang ada lalu tekan ok. Maka nilai constant akan bernilai sesui dengan soal.
Setelah itu hubungkan sesui dengan persamaan matematisnya:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 101
Untuk memperoleh nilai dari P2 maka perlu menekan tool run seperti yang dilingkari diatas. Maka akan muncul nilai P2 seperti dibawah:
Soal:
[LOGIKA DAN PEMROGRAMAN KOMPUTER] TEKNIK MESIN UDAYANA
Nata S,W Page 102
Sebuah tangki tertutup berisi udara bertekanan dan minyak (SGminyak = 0,9) seperti pada gambar: Sebuah barometer tabung U yang menggunakan air raksa (SGraksa=13,6) dihubungkan ke tangki tersebut seperti pada gambar:
Tentukan bacaan tekanan dari alat ukur!!!! (Selesaikan dengan simulink)
Dimana
P1 = Pudara + Berat Jenis minyak + (h1+h2)
Tidak ada komentar:
Posting Komentar